Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amelia J. Eisch is active.

Publication


Featured researches published by Amelia J. Eisch.


Neuron | 2002

Neurobiology of depression.

Eric J. Nestler; Michel Barrot; Ralph J. DiLeone; Amelia J. Eisch; Stephen J. Gold; Lisa M. Monteggia

Current treatments for depression are inadequate for many individuals, and progress in understanding the neurobiology of depression is slow. Several promising hypotheses of depression and antidepressant action have been formulated recently. These hypotheses are based largely on dysregulation of the hypothalamic-pituitary-adrenal axis and hippocampus and implicate corticotropin-releasing factor, glucocorticoids, brain-derived neurotrophic factor, and CREB. Recent work has looked beyond hippocampus to other brain areas that are also likely involved. For example, nucleus accumbens, amygdala, and certain hypothalamic nuclei are critical in regulating motivation, eating, sleeping, energy level, circadian rhythm, and responses to rewarding and aversive stimuli, which are all abnormal in depressed patients. A neurobiologic understanding of depression also requires identification of the genes that make individuals vulnerable or resistant to the syndrome. These advances will fundamentally improve the treatment and prevention of depression.


Cell | 2007

Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.

Vaishnav Krishnan; Ming-Hu Han; Danielle L. Graham; Olivier Berton; William Renthal; Scott J. Russo; Quincey LaPlant; Ami Graham; Michael Lutter; Diane C. Lagace; Subroto Ghose; Robin Reister; Paul Tannous; Thomas A. Green; Rachael L. Neve; Sumana Chakravarty; Arvind Kumar; Amelia J. Eisch; David W. Self; Francis S. Lee; Carol A. Tamminga; Donald C. Cooper; Howard K. Gershenfeld; Eric J. Nestler

While stressful life events are an important cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The molecular mechanisms underlying such resilience are poorly understood. Here, we demonstrate that an inbred population of mice subjected to social defeat can be separated into susceptible and unsusceptible subpopulations that differ along several behavioral and physiological domains. By a combination of molecular and electrophysiological techniques, we identify signature adaptations within the mesolimbic dopamine circuit that are uniquely associated with vulnerability or insusceptibility. We show that molecular recapitulations of three prototypical adaptations associated with the unsusceptible phenotype are each sufficient to promote resistant behavior. Our results validate a multidisciplinary approach to examine the neurobiological mechanisms of variations in stress resistance, and illustrate the importance of plasticity within the brains reward circuits in actively maintaining an emotional homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli

Michel Barrot; Jocelien Olivier; Linda I. Perrotti; Ralph J. DiLeone; Olivier Berton; Amelia J. Eisch; Soren Impey; Daniel R. Storm; Rachael L. Neve; Jerry C. P. Yin; Venetia Zachariou; Eric J. Nestler

The transcription factor cAMP response element (CRE)-binding protein (CREB) has been shown to regulate neural plasticity. Drugs of abuse activate CREB in the nucleus accumbens, an important part of the brains reward pathways, and local manipulations of CREB activity have been shown to affect cocaine reward, suggesting an active role of CREB in adaptive processes that follow exposure to drugs of abuse. Using CRE-LacZ reporter mice, we show that not only rewarding stimuli such as morphine, but also aversive stimuli such as stress, activate CRE-mediated transcription in the nucleus accumbens shell. Using viral-mediated gene transfer to locally alter the activity of CREB, we show that this manipulation affects morphine reward, as well as the preference for sucrose, a more natural reward. We then show that local changes in CREB activity induce a more general syndrome, by altering reactions to anxiogenic, aversive, and nociceptive stimuli as well. Increased CREB activity in the nucleus accumbens shell decreases an animals responses to each of these stimuli, whereas decreased CREB activity induces an opposite phenotype. These results show that environmental stimuli regulate CRE-mediated transcription within the nucleus accumbens shell, and that changes in CREB activity within this brain area subsequently alter gating between emotional stimuli and their behavioral responses. This control appears to be independent of the intrinsic appetitive or aversive value of the stimulus. The potential relevance of these data to addiction and mood disorders is discussed.


Nature Neuroscience | 2010

Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens

Quincey LaPlant; Vincent Vialou; Herbert E. Covington; Dani Dumitriu; Jian Feng; Brandon L. Warren; Ian Maze; David M. Dietz; Emily L. Watts; Sergio D. Iñiguez; Ja Wook Koo; Ezekiell Mouzon; William Renthal; Fiona Hollis; Hui Wang; Michele A. Noonan; Yanhua Ren; Amelia J. Eisch; Carlos A. Bolaños; Mohamed Kabbaj; Guanghua Xiao; Rachael L. Neve; Yasmin L. Hurd; Ronald S. Oosting; Gouping Fan; John H. Morrison; Eric J. Nestler

Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.


The Journal of Neuroscience | 2007

Dynamic Contribution of Nestin-Expressing Stem Cells to Adult Neurogenesis

Diane C. Lagace; Mary C. Whitman; Michele A. Noonan; Jessica L. Ables; Nathan A. DeCarolis; Amy A. Arguello; Michael H. Donovan; Stephanie J. Fischer; Laure A. Farnbauch; Robert D. Beech; Ralph J. DiLeone; Charles A. Greer; Chitra D. Mandyam; Amelia J. Eisch

Understanding the fate of adult-generated neurons and the mechanisms that influence them requires consistent labeling and tracking of large numbers of stem cells. We generated a nestin-CreERT2/R26R-yellow fluorescent protein (YFP) mouse to inducibly label nestin-expressing stem cells and their progeny in the adult subventricular zone (SVZ) and subgranular zone (SGZ). Several findings show that the estrogen ligand tamoxifen (TAM) specifically induced recombination in stem cells and their progeny in nestin-CreERT2/R26R-YFP mice: 97% of SGZ stem-like cells (GFAP/Sox2 with radial glial morphology) expressed YFP; YFP+ neurospheres could be generated in vitro after recombination in vivo, and maturing YFP+ progeny were increasingly evident in the olfactory bulb (OB) and dentate gyrus (DG) granule cell layer. Revealing an unexpected regional dissimilarity in adult neurogenesis, YFP+ cells accumulated up to 100 d after TAM in the OB, but in the SGZ, YFP+ cells reached a plateau 30 d after TAM. In addition, most SVZ and SGZ YFP+ cells became neurons, underscoring a link between nestin and neuronal fate. Finally, quantification of YFP+ cells in nestin-CreERT2/R26R-YFP mice allowed us to estimate, for example, that stem cells and their progeny contribute to no more than 1% of the adult DG granule cell layer. In addition to revealing the dynamic contribution of nestin-expressing stem cells to adult neurogenesis, this work highlights the utility of the nestin-CreERT2/R26R-YFP mouse for inducible gene ablation in stem cells and their progeny in vivo in the two major regions of adult neurogenesis.


Biological Psychiatry | 2003

Brain-derived neurotrophic factor in the ventral midbrain–nucleus accumbens pathway: a role in depression

Amelia J. Eisch; Carlos A. Bolaños; Joris De Wit; Ryan D Simonak; Cindy M Pudiak; Michel Barrot; Joost Verhaagen; Eric J. Nestler

BACKGROUND Previous work has shown that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are involved in appetitive behavior. Here we show that BDNF in the ventral tegmental area-nucleus accumbens (VTA-NAc) pathway is also involved in the development of a depression-like phenotype. METHODS Brain-derived neurotrophic factor signaling in the VTA-NAc pathway was altered in two complementary ways. One group of rats received intra-VTA infusion of vehicle or BDNF for 1 week. A second group of rats received intra-NAc injections of vehicle or adeno-associated viral vectors encoding full-length (TrkB.FL) or truncated (TrkB.T1) TrkB; the latter is kinase deficient and serves as a dominant-negative receptor. Rats were examined in the forced swim test and other behavioral tests. RESULTS Intra-VTA infusions of BDNF resulted in 57% shorter latency to immobility relative to control animals, a depression-like effect. Intra-NAc injections of TrkB.T1 resulted in and almost fivefold longer latency to immobility relative to TrkB.FL and control animals, an antidepressant-like effect. No effect on anxiety-like behaviors or locomotion was seen. CONCLUSIONS These data suggest that BDNF action in the VTA-NAc pathway might be related to development of a depression-like phenotype. This interpretation is intriguing in that it suggests a role for BDNF in the VTA-NAc that is opposite of the proposed role for BDNF in the hippocampus.


The Journal of Comparative Neurology | 2006

Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease

Michael H. Donovan; Umar Yazdani; Rebekah D. Norris; Dora Games; Dwight C. German; Amelia J. Eisch

Abnormal subgranular zone (SGZ) neurogenesis is proposed to contribute to Alzheimers disease (AD)‐related decreases in hippocampal function. Our goal was to examine hippocampal neurogenesis in the PDAPP mouse, a model of AD with age‐dependent accumulation of amyloid‐β42 (Aβ42)‐containing plaques that is well studied with regard to AD therapies. A secondary goal was to determine whether altered neurogenesis in the PDAPP mouse is associated with abnormal maturation or number of mature cells. A tertiary goal was to provide insight into why hippocampal neurogenesis appears to be increased in AD post‐mortem tissue and decreased in most AD mouse models. We report an age‐dependent decrease in SGZ proliferation in homozygous PDAPP mice. At 1 year of age, PDAPP mice also had new dentate gyrus granule neurons with abnormal maturation and fewer dying cells relative to control mice. In contrast to decreased SGZ cell birth, PDAPP mice had increased birth of immature neurons in the outer portion of the granule cell layer (oGCL), providing insight into why some studies link AD with increased neurogenesis. However, these ectopic oGCL cells were still rare compared with SGZ proliferating cells, emphasizing that the primary characteristic of PDAPP mice is decreased neurogenesis. The decrease in SGZ neurogenesis was not associated with an age‐dependent loss of dentate granule neurons. The altered neurogenesis in the PDAPP mouse may contribute to the age‐related cognitive deficits reported in this model of AD and may be a useful adjunct target for assessing the impact of AD therapies. J. Comp. Neurol. 495:70–83, 2006.


Science | 2012

Depression and Hippocampal Neurogenesis: A Road to Remission?

Amelia J. Eisch; David Petrik

Adult-generated hippocampal neurons are required for mood control and antidepressant efficacy, raising hopes that someday we can harness the power of new neurons to treat mood disorders such as depression. However, conflicting findings from preclinical research—involving stress, depression, and neurogenesis—highlight the complexity of considering neurogenesis as a road to remission from depression. To reconcile differences in the literature, we introduce the “neurogenic interactome,” a platform from which to consider the diverse and dynamic factors regulating neurogenesis. We propose consideration of the varying perspectives—system, region, and local regulation of neurogenesis—offered by the interactome and exchange of ideas between the fields of learning and memory and mood disorder research to clarify the role of neurogenesis in the etiology and treatment of depression.


Nature Neuroscience | 2009

Neurod1 is essential for the survival and maturation of adult-born neurons

Zhengliang Gao; Kerstin Ure; Jessica L. Ables; Diane C. Lagace; Klaus-Armin Nave; Sandra Goebbels; Amelia J. Eisch; Jenny Hsieh

The transcriptional program that controls adult neurogenesis is unknown. We generated mice with an inducible stem cell–specific deletion of Neurod1, resulting in substantially fewer newborn neurons in the hippocampus and olfactory bulb. Thus, Neurod1 is cell-intrinsically required for the survival and maturation of adult-born neurons.


Nature Reviews Neuroscience | 2011

Not(ch) just development: Notch signalling in the adult brain

Jessica L. Ables; Joshua J. Breunig; Amelia J. Eisch; Pasko Rakic

The Notch pathway is often regarded as a developmental pathway, but components of Notch signalling are expressed and active in the adult brain. With the advent of more sophisticated genetic manipulations, evidence has emerged that suggests both conserved and novel roles for Notch signalling in the adult brain. Not surprisingly, Notch is a key regulator of adult neural stem cells, but it is increasingly clear that Notch signalling also has roles in the regulation of migration, morphology, synaptic plasticity and survival of immature and mature neurons. Understanding the many functions of Notch signalling in the adult brain, and its dysfunction in neurodegenerative disease and malignancy, is crucial to the development of new therapeutics that are centred around this pathway.

Collaboration


Dive into the Amelia J. Eisch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Phillip D. Rivera

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chitra D. Mandyam

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sarah E. Latchney

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sanghee Yun

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David Petrik

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jessica L. Ables

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nathan A. DeCarolis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rachael L. Neve

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge