Amelia Peterson
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amelia Peterson.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Patrick S. Mitchell; Rachael K. Parkin; Evan M. Kroh; Brian R. Fritz; Stacia K. Wyman; Era L. Pogosova-Agadjanyan; Amelia Peterson; Jennifer Noteboom; Kathy O'Briant; April Allen; Daniel W. Lin; Nicole Urban; Charles W. Drescher; Beatrice S. Knudsen; Derek L. Stirewalt; Robert Gentleman; Robert L. Vessella; Peter S. Nelson; Daniel B. Martin; Muneesh Tewari
Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small (≈22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. miRNAs originating from human prostate cancer xenografts enter the circulation, are readily measured in plasma, and can robustly distinguish xenografted mice from controls. This concept extends to cancer in humans, where serum levels of miR-141 (a miRNA expressed in prostate cancer) can distinguish patients with prostate cancer from healthy controls. Our results establish the measurement of tumor-derived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer.
Molecular & Cellular Proteomics | 2012
Amelia Peterson; Jason D. Russell; Derek J. Bailey; Michael S. Westphall; Joshua J. Coon
Selected reaction monitoring on a triple quadrupole mass spectrometer is currently experiencing a renaissance within the proteomics community for its, as yet, unparalleled ability to characterize and quantify a set of proteins reproducibly, completely, and with high sensitivity. Given the immense benefit that high resolution and accurate mass instruments have brought to the discovery proteomics field, we wondered if highly accurate mass measurement capabilities could be leveraged to provide benefits in the targeted proteomics domain as well. Here, we propose a new targeted proteomics paradigm centered on the use of next generation, quadrupole-equipped high resolution and accurate mass instruments: parallel reaction monitoring (PRM). In PRM, the third quadrupole of a triple quadrupole is substituted with a high resolution and accurate mass mass analyzer to permit the parallel detection of all target product ions in one, concerted high resolution mass analysis. We detail the analytical performance of the PRM method, using a quadrupole-equipped bench-top Orbitrap MS, and draw a performance comparison to selected reaction monitoring in terms of run-to-run reproducibility, dynamic range, and measurement accuracy. In addition to requiring minimal upfront method development and facilitating automated data analysis, PRM yielded quantitative data over a wider dynamic range than selected reaction monitoring in the presence of a yeast background matrix because of PRMs high selectivity in the mass-to-charge domain. With achievable linearity over the quantifiable dynamic range found to be statistically equal between the two methods, our investigation suggests that PRM will be a promising new addition to the quantitative proteomics toolbox.
Molecular Systems Biology | 2009
Tie Koide; David Reiss; J Christopher Bare; Wyming Lee Pang; Marc T. Facciotti; Amy K. Schmid; Min Pan; Bruz Marzolf; Phu T. Van; Fang Yin Lo; Abhishek Pratap; Eric W. Deutsch; Amelia Peterson; Daniel B. Martin; Nitin S. Baliga
Despite the knowledge of complex prokaryotic‐transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well‐defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome‐wide characterization of transcript structures of ∼64% of all genes, including putative non‐coding RNAs in Halobacterium salinarum NRC‐1. Our integrative analysis of transcriptome dynamics and protein–DNA interaction data sets showed widespread environment‐dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3′ ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes—events usually considered spurious or non‐functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.
Molecular & Cellular Proteomics | 2008
Daniel B. Martin; Ted Holzman; Damon May; Amelia Peterson; Ashley Eastham; Jimmy K. Eng; Martin W. McIntosh
Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.
Journal of Proteome Research | 2009
Carly A. Sherwood; Ashley Eastham; Lik Wee Lee; Amelia Peterson; Jimmy K. Eng; David Shteynberg; Luis Mendoza; Eric W. Deutsch; Jenni Risler; Natalie Tasman; Ruedi Aebersold; Henry H N Lam; Daniel B. Martin
Multiple reaction monitoring mass spectrometry (MRM-MS) is a targeted analysis method that has been increasingly viewed as an avenue to explore proteomes with unprecedented sensitivity and throughput. We have developed a software tool, called MaRiMba, to automate the creation of explicitly defined MRM transition lists required to program triple quadrupole mass spectrometers in such analyses. MaRiMba creates MRM transition lists from downloaded or custom-built spectral libraries, restricts output to specified proteins or peptides, and filters based on precursor peptide and product ion properties. MaRiMba can also create MRM lists containing corresponding transitions for isotopically heavy peptides, for which the precursor and product ions are adjusted according to user specifications. This open-source application is operated through a graphical user interface incorporated into the Trans-Proteomic Pipeline, and it outputs the final MRM list to a text file for upload to MS instruments. To illustrate the use of MaRiMba, we used the tool to design and execute an MRM-MS experiment in which we targeted the proteins of a well-defined and previously published standard mixture.
Analytical Chemistry | 2014
Amelia Peterson; Jan-Peter Hauschild; Scott T. Quarmby; Dirk Krumwiede; Oliver Lange; Rachelle A. S. Lemke; Florian Grosse-Coosmann; Stevan Horning; Timothy J. Donohue; Michael S. Westphall; Joshua J. Coon; Jens Griep-Raming
Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins.
Analytical Chemistry | 2010
Amelia Peterson; Graeme C. McAlister; Scott T. Quarmby; Jens Griep-Raming; Joshua J. Coon
We detail the development and characterization of a GC/QLT-Orbitrap hybrid mass spectrometer capable of high resolution (up to 100,000 at m/z 400) and sub-parts-per-million mass accuracy GC/MS. A high-duty cycle, innovative scan type, the nested scan, was implemented to synchronize the Orbitrap acquisition rate and the time scale of gas chromatography (up to 6.5 Hz at resolution 7500). We benchmark this instruments key figures of merit, including resolution, mass accuracy, linear dynamic range, and spectral accuracy, and demonstrate its performance for two challenging applications: the determination of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in environmental samples and the profiling of primary metabolites in Arabidopsis thaliana extracts.
PLOS ONE | 2010
Lynn M. Amon; Wendy Law; Matthew Fitzgibbon; Jennifer Gross; Kathy O'Briant; Amelia Peterson; Charles W. Drescher; Daniel B. Martin; Martin W. McIntosh
Background We used intensive modern proteomics approaches to identify predictive proteins in ovary cancer. We identify up-regulated proteins in both serum and peritoneal fluid. To evaluate the overall performance of the approach we track the behavior of 20 validated markers across these experiments. Methodology Mass spectrometry based quantitative proteomics following extensive protein fractionation was used to compare serum of women with serous ovarian cancer to healthy women and women with benign ovarian tumors. Quantitation was achieved by isotopically labeling cysteine amino acids. Label-free mass spectrometry was used to compare peritoneal fluid taken from women with serous ovarian cancer and those with benign tumors. All data were integrated and annotated based on whether the proteins have been previously validated using antibody-based assays. Findings We selected 54 quantified serum proteins and 358 peritoneal fluid proteins whose case-control differences exceeded a predefined threshold. Seventeen proteins were quantified in both materials and 14 are extracellular. Of 19 validated markers that were identified all were found in cancer peritoneal fluid and a subset of 7 were quantified in serum, with one of these proteins, IGFBP1, newly validated here. Conclusion Proteome profiling applied to symptomatic ovarian cancer cases identifies a large number of up-regulated serum proteins, many of which are or have been confirmed by immunoassays. The number of currently known validated markers is highest in peritoneal fluid, but they make up a higher percentage of the proteins observed in both serum and peritoneal fluid, suggesting that the 10 additional markers in this group may be high quality candidates.
Analytical Chemistry | 2014
Amelia Peterson; Allison J. Balloon; Michael S. Westphall; Joshua J. Coon
Identification of unknown peaks in gas chromatography/mass spectrometry (GC/MS)-based discovery metabolomics is challenging, and remains necessary to permit discovery of novel or unexpected metabolites that may elucidate disease processes and/or further our understanding of how genotypes relate to phenotypes. Here, we introduce two new technologies and an analytical workflow that can facilitate the identification of unknown peaks. First, we report on a GC/Quadrupole-Orbitrap mass spectrometer that provides high mass accuracy, high resolution, and high sensitivity analyte detection. Second, with an “intelligent” data-dependent algorithm, termed molecular-ion directed acquisition (MIDA), we maximize the information content generated from unsupervised tandem MS (MS/MS) and selected ion monitoring (SIM) by directing the MS to target the ions of greatest information content, that is, the most-intact ionic species. We combine these technologies with 13C- and 15N-metabolic labeling, multiple derivatization and ionization types, and heuristic filtering of candidate elemental compositions to achieve (1) MS/MS spectra of nearly all intact ion species for structural elucidation, (2) knowledge of carbon and nitrogen atom content for every ion in MS and MS/MS spectra, (3) relative quantification between alternatively labeled samples, and (4) unambiguous annotation of elemental composition.
Journal of Proteome Research | 2009
Laura Hohmann; Carly A. Sherwood; Ashley Eastham; Amelia Peterson; Jimmy K. Eng; James S. Eddes; David Shteynberg; Daniel B. Martin
Proteomic analysis typically has been performed using proteins digested with trypsin because of the excellent fragmentation patterns they produce in collision induced dissociation (CID). For analyses in which high protein coverage is desirable, such as global monitoring of post-translational modifications, additional sequences can be seen using parallel digestion with a second enzyme. We have benchmarked a relatively obscure basidomycete-derived zinc metalloendopeptidase, Lys-N, that selectively cleaves the amide bond N-terminal of lysine residues. We have found that Lys-N digestion yields peptides with easily assigned CID spectra. Using a mixture of purified proteins as well as a complex yeast lysate, we have shown that Lys-N efficiently digests all proteins at the predicted sites of cleavage. Shotgun proteomics analyses of Lys-N digests of both the standard mixture and yeast lysate yielded peptide and protein identification numbers that were generally comparable to trypsin digestion, whereas the combination data from Lys-N and trypsin digestion substantially enhanced protein coverage. During CID fragmentation, the additional amino terminal basicity enhanced b-ion intensity which was reflected in long b-ion tags that were particularly pronounced during CID in a quadrupole. Finally, immonium ion peaks produced from Lys-N digested peptides originate from the carboxy terminus in contrast to tryptic peptides where immonium ions originate from the amino terminus.