Amelia S. Richardson
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amelia S. Richardson.
Journal of Bone and Mineral Research | 2011
Shuhei Tsuchiya; James P. Simmer; Jan C.-C. Hu; Amelia S. Richardson; Fumiko Yamakoshi; Yasuo Yamakoshi
Dentin sialophosphoprotein (Dspp) is critical for proper dentin biomineralization because genetic defects in DSPP cause dentin dysplasia type II and dentinogenesis imperfecta types II and III. Dspp is processed by proteases into smaller subunits; the initial cleavage releases dentin phosphoprotein (Dpp). We incubated fluorescence resonance energy transfer (FRET) peptides containing the amino acid context of the Dpp cleavage site (YEFDGKSMQGDDPN, designated Dspp‐FRET) or a mutant version of that context (YEFDGKSIEGDDPN, designated mutDspp‐FRET) with BMP‐1, MEP1A, MEP1B, MMP‐2, MMP‐8, MMP‐9, MT1‐MMP, MT3‐MMP, Klk4, MMP‐20, plasmin, or porcine Dpp and characterized the peptide cleavage products. Only BMP‐1, MEP1A, and MEP1B cleaved Dspp‐FRET at the G–D peptide bond that releases Dpp from Dspp in vivo. We isolated Dspp proteoglycan from dentin power and incubated it with the three enzymes that cleaved Dspp‐FRET at the G–D bond. In each case, the released Dpp domain was isolated, and its N‐terminus was characterized by Edman degradation. BMP‐1 and MEP1A both cleaved native Dspp at the correct site to generate Dpp, making both these enzymes prime candidates for the protease that cleaves Dspp in vivo. MEP1B was able to degrade Dpp when the Dpp was at sufficiently high concentration to deplete free calcium ion concentration. Immunohistochemistry of developing porcine molars demonstrated that astacins are expressed by odontoblasts, a result that is consistent with RT‐PCR analyses. We conclude that during odontogenesis, astacins in the predentin matrix cleave Dspp before the DDPN sequence at the N‐terminus of Dpp to release Dpp from the parent Dspp protein.
International Journal of Oral Science | 2012
James P. Simmer; Amelia S. Richardson; Yuan Yuan Hu; Charles E. Smith; Jan Ching-Chun Hu
Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.
Journal of Dental Research | 2014
Shih Kai Wang; Murim Choi; Amelia S. Richardson; Bryan M. Reid; Figen Seymen; M. Yildirim; Elif Bahar Tuna; Koray Gencay; James P. Simmer; Jan C.-C. Hu
Dental enamel formation depends upon the transcellular transport of Ca2+ by ameloblasts, but little is known about the molecular mechanism, or even if the same process is operative during the secretory and maturation stages of amelogenesis. Identifying mutations in genes involved in Ca2+ homeostasis that cause inherited enamel defects can provide insights into the molecular participants and potential mechanisms of Ca2+ handling by ameloblasts. Stromal Interaction Molecule 1 (STIM1) is an ER transmembrane protein that activates membrane-specific Ca2+ influx in response to the depletion of ER Ca2+ stores. Solute carrier family 24, member 4 (SLC24A4), is a Na+/K+/Ca2+ transporter that exchanges intracellular Ca2+ and K+ for extracellular Na+. We identified a proband with syndromic hypomaturation enamel defects caused by a homozygous C to T transition (g.232598C>T c.1276C>T p.Arg426Cys) in STIM1, and a proband with isolated hypomaturation enamel defects caused by a homozygous C to T transition (g.124552C>T; c.437C>T; p.Ala146Val) in SLC24A4. Immunohistochemistry of developing mouse molars and incisors showed positive STIM1 and SLC24A4 signal specifically in maturation-stage ameloblasts. We conclude that enamel maturation is dependent upon STIM1 and SLC24A4 function, and that there are important differences in the Ca2+ transcellular transport systems used by secretory- and maturation-stage ameloblasts.
Journal of Biological Chemistry | 2011
Charles E. Smith; Amelia S. Richardson; Yuanyuan Hu; John D. Bartlett; Jan C.-C. Hu; James P. Simmer
Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition.
Journal of Dental Research | 2010
Hui Chen Chan; L. Mai; A. Oikonomopoulou; H.L. Chan; Amelia S. Richardson; Shih Kai Wang; James P. Simmer; Jan C.-C. Hu
Defects in the enamelin gene (ENAM) cause amelogenesis imperfecta (AI). Our objective was to identify the genetic etiology of enamel hypoplasia in a Caucasian proband. Our hypothesis was that ENAM was defective. The proband and his father have an AG insertion (g.13185_13186insAG; p.422FsX448) in ENAM previously identified in AI kindreds from Slovenia and Turkey. The proband, his brother, and his mother have a novel missense mutation (g.12573C>T) that substitutes leucine for a phosphorylated serine (p.S216L) in the 32-kDa enamelin cleavage product. In this family, a defect in one ENAM allele caused minor pitting or localized enamel hypoplasia, whereas defects in both alleles caused severe enamel malformations, with little or no mineral covering dentin. Ser216 is one of two serines on the 32-kDa enamelin that is phosphorylated by Golgi casein kinase and is thought to mediate calcium binding. We propose that phosphorylation of enamelin is critical for its function.
Human Molecular Genetics | 2014
Shih Kai Wang; Murim Choi; Amelia S. Richardson; Bryan M. Reid; Brent Lin; Susan J. Wang; Jung Wook Kim; James P. Simmer; Jan C.-C. Hu
Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.
European Journal of Oral Sciences | 2011
Charles E. Smith; Yuanyuan Hu; Amelia S. Richardson; John D. Bartlett; Jan C.-C. Hu; James P. Simmer
The purpose of this study was to quantify and compare the amounts of volatiles (mostly protein) and mineral present in developing incisor enamel in normal mice and in those genetically engineered for absence of intact enamelin, ameloblastin, matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4). Data indicated that all mice showed peaks in the gross weight of volatiles and a similar weight of mineral at locations on incisors normally associated with early maturation. Thereafter, the content of volatiles on normal incisors declined rapidly by as much as 62%, but not by 100%, over 2 mm, accompanied by increases of ≈ threefold in mineral weights. Enamelin heterozygous mice (lower incisors) showed a decrease in volatile content across the maturation stage, yet mineral failed to increase significantly. Mmp20 null mice showed no significant loss of volatiles from maturing enamel, yet the amount of mineral increased. Klk4 null mice showed normal mineral acquisition up to early maturation, but the input of new volatiles in mid to late maturation caused the final mineralization to slow below normal levels. These results suggest that it is not only the amount of protein but also the nature or type of protein or fragments present in the local crystallite environment that affects their volumetric expansion as they mature.
Cells Tissues Organs | 2011
James P. Simmer; Yuanyuan Hu; Amelia S. Richardson; John D. Bartlett; Jan C.-C. Hu
Background: The enamel layerof kallikrein 4 (Klk4)-null mice has a normal thickness and a decussating pattern of enamel rods, but it contains residual enamel proteins, is less highly mineralized, and fractures in its deepest part just above the dentino-enamel junction (DEJ). The plane of fracture is puzzling because the deepest enamel is deposited earliest and, through the action of the secretory stage enamel protease (Mmp20), is the most mature part of the enamel layer at the time of the onset of Klk4 expression. Objectives: To characterize the planes of fracture in Mmp20- and Klk4-null mice and to localize Klk4 expression in developing teeth. Methods:Klk4- and Mmp20-null mice were sacrificed at 7 weeks and their mandibular incisors were characterized by scanning electron microscopy. Klk4+/lacZ mice were mated with Klk4+/lacZ mice. Offspring were genotyped by polymerase chain reaction. Klk4+/+, Klk4+/lacZ, and Klk4lacZ/lacZ (null) littermates on postnatal days 5, 8, 11, and 14 were processed for β-galactosidase histochemistry. Results: The enamel layer fractures at the DEJ in Mmp20-null mice, and fractures occur in enamel above the DEJ in Klk4-null mice. Klk4 is not expressed by secretory-stage ameloblasts, murine odontoblasts beneath the secretory stage, or maturation-stage ameloblasts. Klk4 is specifically expressed by transition and maturation-stage ameloblasts. Conclusions: The breakage of enamel near the DEJ in Klk4-null mice is not due to a failure of odontoblasts to express Klk4, but it relates to a progressive hypomineralization of enamel with depth.
European Journal of Oral Sciences | 2011
James P. Simmer; Amelia S. Richardson; Charles E. Smith; Yuanyuan Hu; Jan C.-C. Hu
Kallikrein-related peptidase 4 (KLK4) is critical for proper dental enamel formation. Klk4 null mice, and humans with two defective KLK4 alleles have obvious enamel defects, with no other apparent phenotype. KLK4 mRNA or protein is reported to be present in tissues besides teeth, including prostate, ovary, kidney, liver, and salivary gland. In this study we used the Klk4 knockout/NLS-lacZ knockin mouse to assay Klk4 expression using β-galactosidase histochemistry. Incubations for 5 h were used to detect KLK4 expression with minimal endogenous background, while overnight incubations susceptible to false positives were used to look for trace KLK4 expression. Developing maxillary molars at postnatal days 5, 6, 7, 8, and 14, developing mandibular incisors at postnatal day 14, and selected non-dental tissues from adult wild-type and Klk4(lacZ/lacZ) mice were examined by X-gal histochemistry. After 5 h of incubation, X-gal staining was observed specifically in the nuclei of maturation-stage ameloblasts in molars and incisors from Klk4(lacZ/lacZ) mice and was detected weakly in the nuclei of salivary gland ducts and in patches of prostate epithelia. We conclude that KLK4 is predominantly a tooth-specific protease with low expression in submandibular salivary gland and prostate, and with no detectable expression in liver, kidney, testis, ovary, oviduct, epididymis, and vas deferens.
PLOS ONE | 2012
Jan C.-C. Hu; Hui Chen Chan; Stephen G. Simmer; Figen Seymen; Amelia S. Richardson; Yuanyuan Hu; Rachel N. Milkovich; Ninna M R P Estrella; M. Yildirim; Merve Bayram; Chiung Fen Chen; James P. Simmer
Amelogenesis imperfecta (AI) is a group of inherited conditions featuring isolated enamel malformations. About 5% of AI cases show an X-linked pattern of inheritance, which are caused by mutations in AMELX. In humans there are two, non-allelic amelogenin genes: AMELX (Xp22.3) and AMELY (Yp11.2). About 90% of amelogenin expression is from AMELX, which is nested within intron 1 of the gene encoding Rho GTPase activating protein 6 (ARHGAP6). We recruited two AI families and determined that their disease-causing mutations were partial deletions in ARHGAP6 that completely deleted AMELX. Affected males in both families had a distinctive enamel phenotype resembling “snow-capped” teeth. The 96,240 bp deletion in family 1 was confined to intron 1 of ARHGAP6 (g.302534_398773del96240), but removed alternative ARHGAP6 promoters 1c and 1d. Analyses of developing teeth in mice showed that ARHGAP6 is not expressed from these promoters in ameloblasts. The 52,654 bp deletion in family 2 (g.363924_416577del52654insA) removed ARHGAP6 promoter 1d and exon 2, precluding normal expression of ARHGAP6. The male proband of family 2 had slightly thinner enamel with greater surface roughness, but exhibited the same pattern of enamel malformations characteristic of males in family 1, which themselves showed minor variations in their enamel phenotypes. We conclude that the enamel defects in both families were caused by amelogenin insufficiency, that deletion of AMELX results in males with a characteristic snow-capped enamel phenotype, and failed ARHGAP6 expression did not appreciably alter the severity of enamel defects when AMELX was absent.