Amélie Beury-Cirou
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amélie Beury-Cirou.
PLOS ONE | 2012
Alexandre Crépin; Corinne Barbey; Amélie Beury-Cirou; Valérie Hélias; Laure Taupin; Sylvie Reverchon; William Nasser; Denis Faure; Nicole Orange; Marc Feuilloley; Karin Heurlier; Jean-François Burini; Xavier Latour
Background Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. Methodology/Principal Findings Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. Conclusions/Significance Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates.
Sensors | 2012
Alexandre Crépin; Amélie Beury-Cirou; Corinne Barbey; Christine Farmer; Valérie Hélias; Jean-François Burini; Denis Faure; Xavier Latour
Soft-rot bacteria Pectobacterium and Dickeya use N-acyl homoserine lactones (NAHSLs) as diffusible signals for coordinating quorum sensing communication. The production of NAHSLs was investigated in a set of reference strains and recently-collected isolates, which belong to six species and share the ability to infect the potato host plant. All the pathogens produced different NAHSLs, among which the 3-oxo-hexanoyl- and the 3-oxo-octanoyl-l-homoserine lactones represent at least 90% of total produced NAHSL-amounts. The level of NAHSLs varied from 0.6 to 2 pg/cfu. The involvement of NAHSLs in tuber maceration was investigated by electroporating a quorum quenching vector in each of the bacterial pathogen strains. All the NAHSL-lactonase expressing strains produced a lower amount of NAHSLs as compared to those harboring the empty vector. Moreover, all except Dickeya dadantii 3937 induced a lower level of symptoms in potato tuber assay. Noticeably, aggressiveness appeared to be independent of both nature and amount of produced signals. This work highlights that quorum sensing similarly contributed to virulence in most of the tested Pectobacterium and Dickeya, even the strains had been isolated recently or during the past decades. Thus, these key regulatory-molecules appear as credible targets for developing anti-virulence strategies against these plant pathogens.
Molecular Ecology | 2014
Samuel Mondy; Aurore Lenglet; Amélie Beury-Cirou; Celestin Libanga; Pascal Ratet; Denis Faure; Yves Dessaux
To investigate how exudation shapes root‐associated bacterial populations, transgenic Arabidopsis thaliana plants that exuded the xenotopic compound octopine at low and high rates were grown in a nonsterile soil. Enumerations of both cultivable and octopine‐degrading bacteria demonstrated that the ratios of octopine degraders increased along with octopine concentration. An artificial exudation system was also set up in which octopine was brought at four ratios. The density of octopine‐degrading bacteria directly correlated with the input of octopine. Bacterial diversity was analysed by rrs amplicon pyrosequencing. Ensifer and Pseudomonas were significantly more frequently detected in soil amended with artificial exudates. However, the density of Pseudomonas increased as a response to carbon supplementation while that of Ensifer only correlated with octopine concentrations possibly in relation to two opposed colonization strategies of rhizosphere bacteria, that is, copiotrophy and oligotrophy.
PLOS ONE | 2013
Mélanie Tannières; Amélie Beury-Cirou; Armelle Vigouroux; Samuel Mondy; Yves Dessaux; Denis Faure
Quorum-sensing (QS) signals of the N-acylhomoserine lactone (NAHL) class are cleaved by quorum-quenching enzymes, collectively named NAHLases. Here, functional metagenomics allowed the discovery of a novel bacterial NAHLase in a rhizosphere that was treated with γ-caprolactone. As revealed by rrs-DGGE and rrs-pyrosequencing, this treatment increased the percentage of the NAHL-degrading bacteria and strongly biased the structure of the bacterial community, among which Azospirillum dominated. Among the 29 760 fosmids of the metagenomic library, a single one was detected that expressed the qsdB gene conferring NAHL-degradation upon E. coli and decreased QS-regulated virulence in Pectobacterium. Phylogenetic analysis of the 34 orfs of the fosmid suggested that it would belong to an unknown Proteobacterium - probably a γ-proteobacterium. qPCR quantification of the NAHLase-encoding genes attM, qsdA, and qsdB revealed their higher abundance in the γ-caprolactone-treated rhizosphere as compared to an untreated control. The purified QsdB enzyme exhibited amidase activity. QsdB is the first amidase signature (AS) family member exhibiting NAHLase-activity. Point mutations in the AS-family catalytic triad K-S-S abolished the NAHLase activity of QsdB. This study extends the diversity of NAHLases and highlights a common phylogenic origin of AS-family enzymes involved in the degradation of natural compounds, such as NAHLs, and xenobiotics, such as nylon and linuron.
PLOS ONE | 2013
Amélie Beury-Cirou; Mélanie Tannières; Corinne Minard; Laurent Soulère; Tsiry Rasamiravaka; Robert H. Dodd; Yves Queneau; Yves Dessaux; Catherine Guillou; Olivier M. Vandeputte; Denis Faure
N-Acylhomoserine lactone (AHL)-mediated quorum-sensing (QS) regulates virulence functions in plant and animal pathogens such as Agrobacterium tumefaciens and Pseudomonas aeruginosa. A chemolibrary of more than 3500 compounds was screened using two bacterial AHL-biosensors to identify QS-inhibitors (QSIs). The purity and structure of 15 QSIs selected through this screening were verified using HPLC MS/MS tools and their activity tested on the A. tumefaciens and P. aeruginosa bacterial models. The IC50 value of the identified QSIs ranged from 2.5 to 90 µg/ml, values that are in the same range as those reported for the previously identified QSI 4-nitropyridine-N-oxide (IC50 24 µg/ml). Under the tested culture conditions, most of the identified QSIs did not exhibit bacteriostatic or bactericidal activities. One third of the tested QSIs, including the plant compound hordenine and the human sexual hormone estrone, decreased the frequency of the QS-regulated horizontal transfer of the tumor-inducing (Ti) plasmid in A. tumefaciens. Hordenine, estrone as well as its structural relatives estriol and estradiol, also decreased AHL accumulation and the expression of six QS-regulated genes (lasI, lasR, lasB, rhlI, rhlR, and rhlA) in cultures of the opportunist pathogen P. aeruginosa. Moreover, the ectopic expression of the AHL-receptors RhlR and LasR of P. aeruginosa in E. coli showed that their gene-regulatory activity was affected by the QSIs. Finally, modeling of the structural interactions between the human hormones and AHL-receptors LasR of P. aeruginosa and TraR of A. tumefaciens confirmed the competitive binding capability of the human sexual hormones. This work indicates potential interferences between bacterial and eukaryotic hormonal communications.
Genome Announcements | 2015
Jérémy Cigna; Yannick Raoul des Essarts; Samuel Mondy; Valérie Hélias; Amélie Beury-Cirou; Denis Faure
ABSTRACT Pseudomonas fluorescens strains PA4C2 and PA3G8 and Pseudomonas putida strain PA14H7 were isolated from potato rhizosphere and show an ability to inhibit the growth of Dickeya phytopathogens. Here, we report their draft genome sequences, which provide a basis for understanding the molecular mechanisms involved in antibiosis against Dickeya.
Genome Announcements | 2014
Slimane Khayi; Samuel Mondy; Amélie Beury-Cirou; Mohieddine Moumni; Valérie Hélias; Denis Faure
ABSTRACT Here we present the genome sequence of Dickeya solani strain RNS 08.23.3.1A (PRI3337), isolated from Solanum tuberosum. Dickeya solani, recently described on potato cultures in Europe, is a proposed new taxon closely related to the Dickeya dianthicola and Dickeya dadantii species.
Applied and Environmental Microbiology | 2016
Yannick Raoul des Essarts; Jérémy Cigna; Angélique Quêtu-Laurent; Aline Caron; Euphrasie Munier; Amélie Beury-Cirou; Valérie Hélias; Denis Faure
ABSTRACT Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers.
Genome Announcements | 2013
Anthony Kwasiborski; Samuel Mondy; Amélie Beury-Cirou; Denis Faure
ABSTRACT Pectobacterium atrosepticum strain CFBP6276 is a pectinolytic enterobacterium causing blackleg and soft rot of the stem and tuber of Solanum tuberosum. Its virulence is under the control of quorum sensing, with N-acylhomoserine lactones as communication signals. Here, we report the genome sequence of P. atrosepticum strain CFBP6276.
Genome Announcements | 2015
Slimane Khayi; Yannick Raoul des Essarts; Samuel Mondy; Mohieddine Moumni; Valérie Hélias; Amélie Beury-Cirou; Denis Faure
ABSTRACT Pectobacterium spp. are bacterial pathogens causing soft rot diseases on a wide range of plants and crops. We present in this paper the draft genome sequences of three bacterial strains, Pseudomonas brassicacearum PP1-210F and PA1G7 and Bacillus simplex BA2H3, which exhibit antagonistic activities against the Pectobacterium plant pathogens.