Amélie Danlos
Conservatoire national des arts et métiers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amélie Danlos.
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2013
Hussain Nouri; Amélie Danlos; Florent Ravelet; Farid Bakir; Christophe Sarraf
The purpose of this work is to study experimentally the aerodynamic characteristics of a subsonic counter-rotating axial-flow fans system operating in a ducted configuration. The fans of diameter D = 375 mm were designed to match the specification point using an original iterative method: the front rotor blade cascade is designed with a conventional inverse method, setting the radial distribution of the Euler work. The through-flow is then computed using an axisymmetric and radial equilibrium asumption, with empirical models of losses. The rear rotor is not conventional but is designed to straighten the radial profile of the tangential velocity. The design of the front rotor is then modified until the stage meets the requirements. The experimental setup is arranged such that the rotation rate of each fan is independently controlled and that the axial distance between the rotors can be varied from 17% to 310% of the mid-span chord length. Systematic measurements of the global performances and local measurements of the velocity field and of the wall pressure fluctuations are performed, in order to first validate the design method, and to explore the effects of the two specific free parameters of the system: the axial spacing and the ratio of rotation rates. The results show that the efficiency is strongly increased compared to a conventional rotor or to a rotor-stator stage. The developed design method slightly over-predicts the pressure rise and slightly under-predicts the best ratio of rotation rates. Flow angle measurements downstream of the stage show that the outflow is not completely straightened at the design point. Finally, the system is highly efficient on a wide range of flow-rates and pressure rises: this system has thus a very flexible use, with a large patch of high efficient operating points in the parameter space.
Journal of Fluids Engineering-transactions of The Asme | 2014
Amélie Danlos; Jean-Elie Méhal; Florent Ravelet; Olivier Coutier-Delgosha; Farid Bakir
Cavitation is a limiting phenomenon in many domains of fluid mechanics. Instabilities of a partial cavity developed on an hydrofoil, a converging-diverging step or in an inter-blade channel in turbomachinery, have already been investigated and described in many previous works. The aim of this study is to evaluate a passive control method of the sheet cavity. According to operating conditions, cavitation can be described by two different regimes: an unstable regime with a cloud cavitation shedding and a stable regime with only a pulsating sheet cavity. Avoiding cloud cavitation can limit structure damages since a pulsating sheet cavity is less agressive. The surface condition of a converging-diverging step, like a Venturi-type obstacle, is here studied as a solution for a passive control of the cavitation. This study discusses the effect of an organized roughness, in the shape of longitudinal grooves, on the developed sheet cavity. Analyzes conducted with Laser Doppler Velocimetry, visualisations and pressure measurements show that the grooves geometry, and especially the groove depth, acts on the sheet cavity dynamics. Results show that modifying the surface condition, by varying the grooves geometry, can reduce cavity sheet length and even suppress the cloud cavitation shedding.
Journal of Physics: Conference Series | 2015
Petar Tomov; Amélie Danlos; Sofiane Khelladi; Florent Ravelet; Christophe Sarraf; Farid Bakir
The fact of injecting bubbles into a cavitating flow influences typical cavitating behavior. Cavitation and aerated cavitation experiments has been carried out on a symmetrical venturi nozzle with convergent/divergent angles of 18° and 8°, respectively. A snapshot Proper Orthogonal Decomposition (POD) technique is used to identify different modes in terms of discharge flow velocity, pressure and injected quantity of air. The energy spectrum per given mode is also presented. The first four modes are outlined in the present paper for an aerated and non-aerated cavitating flows.
TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES16-Cnam | 2017
Adrian Clenci; Rodica Niculescu; Victor Iorga-Simăn; Alina Trică; Amélie Danlos
The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. This paper is a consequence of a study on assessing the cold-starting performance of a compression ignition engine fueled with different blends of fossil diesel fuel and biodiesel. Through experimental investigations, it was found that the engine starting at -20°C was no longer possible in the case of using B50 (50% diesel + 50% biofuel made from sunflower oil). In order to “force” the engine starting in this particular situation, Di-Ethyl-Ether (DEE) was injected into the intake manifold. DEE being a highly flammable substance, the result was a sudden and explosive engine starting, the peak pressu...
TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES16-Cnam | 2017
Elie Keryakos; Joseph Toubassy; Amélie Danlos; Denis Clodic; Georges Descombes
The frosting fin-and-tube heat exchanger used in this study is implemented in the dehydration process of a biogas upgrading pilot. Water is separated from the biogas by frosting it at very low temperatures on the cold surfaces of the fin-and-tube heat exchanger. Once frosted, a defrosting system is used to remove water from the process. The main interest of this study is the frosting system. The effects of the biogas velocity, fin material, tube material and frost layer thickness on the performance of the fin-and-tube heat exchanger are investigated. Increasing the biogas velocity tends to increase the frosting layer thickness and the external pressure drop. This will lead to decrease the heat exchanger performance and the frosting cycle duration. The thermal conductivity of the fins and tubes has a major effect on the performance of the heat exchanger. Higher thermal conductivity decreases the heat exchanged surface. A numerical model has been developed, then numerical and experimental results extracted ...
TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES16-Cnam | 2017
Joseph Bassila; Joseph Toubassy; Amélie Danlos; Georges Descombes; Denis Clodic
Cryo Pur technology uses cryogenic separation to remove water vapor and carbon dioxide from biogas, in order to obtain bio-methane. To cool down the biogas at a very low temperature, a fin-and-tube heat exchanger is designed. In order to improve the fin-and-tube heat exchanger performance, a model is developed to investigate the material and fin pitch on frosting carbon dioxide. This paper will study the effect of the tubes and the fins material, and the fin pitch effect. The purpose is to extend the duration of a frosting cycle.
IOP Conference Series: Materials Science and Engineering | 2017
Michael Deligant; Amélie Danlos; Pierre Podevin; Adrian Clenci; S Guilain
The surge limit on automotive turbocharger needs to be avoided to prevent operations with pressure and mass flow oscillations. Mild surge is accompanied by noise which is disturbing. Deep surge can cause significant loss of engine power and severe drivability issues. It is necessary to know the stationary limit in order to match a turbocharger with an engine, ensuring enough surge margin. However, this choice does not guarantee surge free operation during transient functioning. In this paper, the surge onset of a compressor while closing a downstream valve is studied. Various tests have been carried out varying the closing time, the position of the initial operating point and the volume of the circuit. The inlet and outlet signals of physical parameters are analyzed with spectral and temporal methods in order to define the instant of the surge occurrence.
International Journal of Heat and Fluid Flow | 2014
Amélie Danlos; Florent Ravelet; Olivier Coutier-Delgosha; Farid Bakir
Energy Procedia | 2014
Cynthia Haddad; Christelle Périlhon; Amélie Danlos; Maurice-Xavier François; Georges Descombes
Energies | 2016
Adrian Clenci; Rodica Niculescu; Amélie Danlos; Victor Iorga-Simăn; Alina Trică