Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amélie Dendooven is active.

Publication


Featured researches published by Amélie Dendooven.


Advanced Drug Delivery Reviews | 2010

Targeting podocyte-associated diseases.

Jan Willem Leeuwis; Tri Q. Nguyen; Amélie Dendooven; Robbert J. Kok; Roel Goldschmeding

Injury to the podocytes is the initiating cause of many renal diseases, leading to proteinuria with possible progression to end-stage renal disease. Podocytes are highly specialized cells, with an important role in maintaining the glomerular filtration barrier and producing growth factors for both mesangial cells and endothelial cells. With their foot processes they cover the glomerular basement membrane, and form slit diaphragms with neighboring podocytes. Human podocytopathies include focal and segmental glomerulosclerosis, minimal change disease, membranous nephropathy, collapsing glomerulopathy and diabetic nephropathy. Research in the last two decades has demonstrated great progress in understanding the molecular mechanisms leading to podocytopathies. These include single gene defects in slit diaphragm proteins, but also discovery of apoptotic, enzymatic and other pathways involved in podocyte injury. With this progress, a great number of animal models is now available to study either specific podocytopathies, e.g. in mouse models with single gene mutations, or more general podocyte injury patterns, such as the lipopolysaccharide or protamine sulfate model of foot process effacement. In this review, the morphology of the glomerulus will be discussed, with a focus on the podocyte, its interactions with surrounding cells, and the highly differentiated slit diaphragm separating the apical from the basal membrane. We also provide an overview of human podocytopathies and animal models to study these diseases. In the last part we discuss targeted therapies addressing pathways and proteins affected in podocyte injury.


International Journal of Experimental Pathology | 2011

Oxidative stress in obstructive nephropathy

Amélie Dendooven; David A. Ishola; Tri Q. Nguyen; Dionne M. van der Giezen; Robbert J. Kok; Roel Goldschmeding; Jaap A. Joles

Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress.


Biomarkers | 2011

Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis

Amélie Dendooven; Karin G. Gerritsen; Tri Q. Nguyen; Robbert J. Kok; Roel Goldschmeding

Background: Connective tissue growth factor (CTGF) has been identified as a key factor in the pathogenesis of diseases with significant fibrosis-related complications such as hepatitis, diabetes and renal transplantation. Increasing evidence shows that CTGF levels in plasma, serum and urine have promising biomarker applicability in these disorders. Objective: To present an overview of current knowledge on CTGF in various patient populations and the technical aspects of CTGF measurement by enzyme-linked immunosorbent assay (ELISA). Method: We performed a comprehensive literature search by using electronic bibliographic databases. Conclusion: CTGF is associated with disease severity parameters and outcome in fibrotic disease and may have diagnostic and prognostic values. However, CTGF ELISA needs standardization.


American Journal of Pathology | 2011

Loss of Endogenous Bone Morphogenetic Protein-6 Aggravates Renal Fibrosis

Amélie Dendooven; Olivia van Oostrom; Dionne M. van der Giezen; Jan Willem Leeuwis; Cristel Snijckers; Jaap A. Joles; Elizabeth J. Robertson; Marianne C. Verhaar; Tri Q. Nguyen; Roel Goldschmeding

Bone morphogenetic protein-6 (BMP-6) suppresses inflammatory genes in renal proximal tubular cells and regulates iron metabolism by inducing hepcidin. In diabetic patients, an increase of myofibroblast progenitor cells (MFPCs), also known as fibrocytes, was found to be associated with decreased BMP-6 expression. We hypothesized that loss of endogenous BMP-6 would aggravate renal injury and fibrosis. Wild type (WT) and BMP-6 null mice underwent unilateral ureteral obstruction. In WT mice, ureteral obstruction down-regulated BMP-6. Obstructed kidneys of BMP-6 null mice showed more casts (1.5-fold), epithelial necrosis (1.4-fold), and brush border loss (1.3-fold). This was associated with more inflammation (1.8-fold more CD45(+) cells) and more pronounced overexpression of profibrotic genes for αSMA (2.0-fold), collagen I (6.8-fold), fibronectin (4.3-fold), CTGF (1.8-fold), and PAI-1 (3.8-fold), despite similar BMP-7 expression. Also, 1.3-fold more MFPCs were obtained from BMP-6 null than from WT mononuclear cell cultures, but in vivo only very few MFPCs were observed in obstructed kidneys, irrespective of BMP-6 genotype. The obstructed kidneys of BMP-6 null mice showed 2.2-fold more iron deposition, in association with 3.3-fold higher expression of the oxidative stress marker HO-1. Thus, ureteral obstruction leads to down-regulation of BMP-6 expression, and BMP-6 deficiency aggravates tubulointerstitial damage and fibrosis independent of BMP-7. This process appears to involve loss of both direct anti-inflammatory and antifibrotic action and indirect suppressive effects on renal iron deposition, oxidative stress, and MFPCs.


Matrix Biology | 2012

Hemizygous deletion of CTGF/CCN2 does not suffice to prevent fibrosis of the severely injured kidney.

Lucas L. Falke; Amélie Dendooven; Jan Willem Leeuwis; Tri Q. Nguyen; Rob J. Van Geest; Dionne M. van der Giezen; Roel Broekhuizen; Karen M. Lyons; Reinout Stoop; Hans Kemperman; Reinier O. Schlingemann; Jaap A. Joles; Roel Goldschmeding

BACKGROUND Connective Tissue Growth Factor (CTGF/CCN2) is an important mediator of kidney fibrosis. Previous observations indicated that attenuation of CCN2 expression sufficed to alleviate early kidney damage. However, little is known about the role of CCN2 in fibrosis of severely damaged and more chronically injured kidneys. Therefore, we examined the effects of CCN2 haploinsufficiency on the progression of renal scarring in long-term STZ-induced diabetic nephropathy, in a more advanced stage of obstructive nephropathy following unilateral ureteric obstruction (UUO), and in severe aristolochic acid (AA)-induced tubulotoxic nephritis. METHODS Wild-type (WT, CCN2(+/+)) and hemizygous CCN2(+/-) C57Bl/6 mice were studied. In the diabetes experiment, streptozotocin-injected and control mice were followed for 6 months, with regular blood pressure, glycaemia and albuminuria recordings. In the UUO experiment, the left ureter was obstructed for 14 days with the contralateral kidney serving as control. For the AA experiment, mice were followed for 25 days after 5 intraperitoneal injections with AA and compared to control mice injected with buffer alone. Organs were harvested for histology, mRNA and protein measurements. Collagen content was determined by HPLC and expressed as hydroxyproline/proline ratio. RESULTS CCN2 expression was significantly increased in the damaged as compared to control kidneys. In all three models, CCN2 levels in the damaged kidneys of CCN2(+/-) mice averaged about 50% of those in damaged WT kidneys. After 6 months of diabetes, albuminuria was increased 2.5-fold in WT mice, compared to 1.5-fold in CCN2(+/-) mice, mesangial matrix was expanded 5-fold in WT and 4.4-fold in CCN2(+/-) mice and the glomerular basement membrane was thickened 1.3-fold in WT and 1.5-fold in CCN2(+/-) mice (all differences between WT and CCN2(+/-) mice are NS). Tubular damage and interstitial fibrosis scores were also not different between Wt and CCN2(+/-) mice in the diabetes (1.8 vs. 1.7), UUO (2.8 vs. 2.6), and AA (1.4 vs. 1.2) models, as was the case for macrophage influx and collagen content in these three models. CONCLUSION Unlike in mild and relatively early STZ-induced diabetic nephropathy, scarring of severely and chronically damaged kidneys is not attenuated by a 50% reduction of CCN2 to (near) normal levels. This suggests that CCN2 is either redundant in severe and chronic kidney disease, or that it is a limiting factor only at subnormal concentrations requiring further reduction by available or emerging therapies to prevent fibrosis of the severely injured kidney.


PLOS ONE | 2014

Patients with Encapsulating Peritoneal Sclerosis Have Increased Peritoneal Expression of Connective Tissue Growth Factor (CCN2), Transforming Growth Factor-β1, and Vascular Endothelial Growth Factor

Alferso C. Abrahams; Sayed M. Habib; Amélie Dendooven; Bruce L. Riser; Jan Willem van der Veer; Raechel J. Toorop; Michiel G.H. Betjes; Marianne C. Verhaar; Chris Watson; Tri Q. Nguyen; Walther H. Boer

Introduction Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis. Materials and methods Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA. Results Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P<0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P<0.001), TGFβ1 (24-fold, P<0.05), and VEGF (77-fold, P<0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0±4.5 vs. 0.91±0.92 ng/ml, P<0.01), while plasma CCN2 levels were not increased. Conclusions Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2 as biomarker and target for CCN2-inhibiting agents to prevent or treat EPS warrants further study.


American Journal of Kidney Diseases | 2012

Effect of GFR on Plasma N-Terminal Connective Tissue Growth Factor (CTGF) Concentrations

Karin G. Gerritsen; Alferso C. Abrahams; Hilde P.E. Peters; Tri Q. Nguyen; Maarten P. Koeners; Claire H. den Hoedt; Amélie Dendooven; Marinus A. van den Dorpel; Peter J. Blankestijn; Jack F.M. Wetzels; Jaap A. Joles; Roel Goldschmeding; Robbert J. Kok

BACKGROUND Connective tissue growth factor (CTGF) has a key role in the pathogenesis of renal and cardiac fibrosis. Its amino-terminal fragment (N-CTGF), the predominant form of CTGF detected in plasma, has a molecular weight in the middle molecular range (18 kDa). However, it is unknown whether N-CTGF is a uremic retention solute that accumulates in chronic kidney disease (CKD) due to decreased renal clearance and whether it can be removed by hemodiafiltration. STUDY DESIGN 4 observational studies in patients and 2 pharmacokinetic studies in rodents. SETTING & PARTICIPANTS 4 single-center studies. First study (cross-sectional): 88 patients with CKD not receiving kidney replacement therapy. Second study (cross-sectional): 23 patients with end-stage kidney disease undergoing low-flux hemodialysis. Third study: 9 kidney transplant recipients before and 6 months after transplant. Fourth study: 11 low-flux hemodialysis patients and 12 hemodiafiltration patients before and after one dialysis session. PREDICTOR First, second, and third study: (residual) glomerular filtration rate (GFR). Fourth study: dialysis modality. OUTCOMES & MEASUREMENTS Plasma (N-)CTGF concentrations, measured by enzyme-linked immunosorbent assay. RESULTS In patients with CKD, we observed an independent association between plasma CTGF level and estimated GFR (β = -0.72; P < 0.001). In patients with end-stage kidney disease, plasma CTGF level correlated independently with residual kidney function (β = -0.55; P = 0.046). Successful kidney transplant resulted in a decrease in plasma CTGF level (P = 0.008) proportional to the increase in estimated GFR. Plasma CTGF was not removed by low-flux hemodialysis, whereas it was decreased by 68% by a single hemodiafiltration session (P < 0.001). Pharmacokinetic studies in nonuremic rodents confirmed that renal clearance is the major elimination route of N-CTGF. LIMITATIONS Observational studies with limited number of patients. Fourth study: nonrandomized, evaluation of the effect of one session; randomized longitudinal study is warranted. CONCLUSION Plasma (N-)CTGF is eliminated predominantly by the kidney, accumulates in CKD, and is decreased substantially by a single hemodiafiltration session.


Journal of Negative Results in Biomedicine | 2011

The CTGF -945GC polymorphism is not associated with plasma CTGF and does not predict nephropathy or outcome in type 1 diabetes

Amélie Dendooven; Tri Q. Nguyen; Lodewijk A.A. Brosens; Dongxia Li; Lise Tarnow; Hans-Henrik Parving; Peter Rossing; Roel Goldschmeding

The -945GC polymorphism (rs6918698) in the connective tissue growth factor gene promoter (CTGF/CCN-2) has been associated with end organ damage in systemic sclerosis. Because CTGF is important in progression of diabetic kidney disease, we investigated whether the -945GC polymorphism is associated with plasma CTGF level and outcome in type 1 diabetes.The study cohort consisted of 448 diabetic nephropathy patients and 419 normoalbuminuric diabetic patients with complete data concerning renal function and cardiovascular characteristics. Genomic DNA was genotyped by a QPCR-based SNP assay. We observed no relation between the -945GC polymorphism and plasma CTGF level, and the genotype frequencies were not different in nephropathy patients vs. normoalbuminuric controls. General and cardiovascular mortality, and renal function decline was similar in patients with CC, CG or GG genotypes.In conclusion, the -945GC SNP does not affect plasma CTGF levels, incidence and prognosis of diabetic nephropathy, and cardiovascular outcome.


Journal of Histochemistry and Cytochemistry | 2014

Connective Tissue Growth Factor Is Involved in Structural Retinal Vascular Changes in Long-Term Experimental Diabetes

Rob J. Van Geest; Jan Willem Leeuwis; Amélie Dendooven; Frederick Pfister; Klazien S. Bosch; Kees A. Hoeben; Ilse M. C. Vogels; Dionne M. van der Giezen; N Dietrich; Hans-Peter Hammes; Roel Goldschmeding; Ingeborg Klaassen; Cornelis J. F. Van Noorden; Reinier O. Schlingemann

Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF+/−) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF+/− mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF+/− mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR.


PLOS ONE | 2015

CD4-positive T cells and M2 macrophages dominate the peritoneal infiltrate of patients with encapsulating peritoneal sclerosis

Sayed M. Habib; Alferso C. Abrahams; Mario R. Korte; Robert Zietse; Lisette de Vogel; Walther H. Boer; Amélie Dendooven; Marian C. Clahsen-van Groningen; Michiel G.H. Betjes

Background Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). Previously, it has been shown that infiltrating CD4-positive T cells and M2 macrophages are associated with several fibrotic conditions. Therefore, the characteristics of the peritoneal cell infiltrate in EPS may be of interest to understand EPS pathogenesis. In this study, we aim to elucidate the composition of the peritoneal cell infiltrate in EPS patients and relate the findings to clinical outcome. Study Design, Setting, and Participants We studied peritoneal membrane biopsies of 23 EPS patients and compared them to biopsies of 15 PD patients without EPS. The cellular infiltrate was characterized by immunohistochemistry to detect T cells(CD3-positive), CD4-positive (CD4+) and CD8-positive T cell subsets, B cells(CD20-positive), granulocytes(CD15-positive), macrophages(CD68-positive), M1(CD80-positive), and M2(CD163-positive) macrophages. Tissues were analysed using digital image analysis. Kaplan-Meier survival analysis was performed to investigate the survival in the different staining groups. Results The cellular infiltrate in EPS biopsies was dominated by mononuclear cells. For both CD3 and CD68, the median percentage of area stained was higher in biopsies of EPS as opposed to non-EPS patients (p<0.001). EPS biopsies showed a higher percentage of area stained for CD4 (1.29%(0.61-3.20)) compared to CD8 (0.71%(0.46-1.01), p = 0.04), while in the non-EPS group these cells were almost equally represented (respectively 0.28%(0.05-0.83) versus 0.22%(0.17-0.43), p = 0.97). The percentage of area stained for both CD80 and CD163 was higher in EPS than in non-EPS biopsies (p<0.001), with CD163+ cells being the most abundant phenotype. Virtually no CD20-positive and CD15-positive cells were present in biopsies of a subgroup of EPS patients. No relation was found between the composition of the mononuclear cell infiltrate and clinical outcome. Conclusions A characteristic mononuclear cell infiltrate consisting of CD4+ and CD163+ cells dominates the peritoneum of EPS patients. These findings suggest a role for both CD4+ T cells and M2 macrophages in the pathogenesis of EPS.

Collaboration


Dive into the Amélie Dendooven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge