Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amélie Dricot is active.

Publication


Featured researches published by Amélie Dricot.


Nature | 2005

Towards a proteome-scale map of the human protein-protein interaction network.

Jean François Rual; Kavitha Venkatesan; Tong Hao; Tomoko Hirozane-Kishikawa; Amélie Dricot; Ning Li; Gabriel F. Berriz; Francis D. Gibbons; Matija Dreze; Nono Ayivi-Guedehoussou; Niels Klitgord; Christophe Simon; Mike Boxem; Jennifer Rosenberg; Debra S. Goldberg; Lan V. Zhang; Sharyl L. Wong; Giovanni Franklin; Siming Li; Joanna S. Albala; Janghoo Lim; Carlene Fraughton; Estelle Llamosas; Sebiha Cevik; Camille Bex; Philippe Lamesch; Robert S. Sikorski; Jean Vandenhaute; Huda Y. Zoghbi; Alex Smolyar

Systematic mapping of protein–protein interactions, or ‘interactome’ mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein–protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of ∼8,100 currently available Gateway-cloned open reading frames and detected ∼2,800 interactions. This data set, called CCSB-HI1, has a verification rate of ∼78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by ∼70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.


Science | 2008

High-quality binary protein interaction map of the yeast interactome network

Haiyuan Yu; Pascal Braun; Muhammed A. Yildirim; Irma Lemmens; Kavitha Venkatesan; Julie M. Sahalie; Tomoko Hirozane-Kishikawa; Fana Gebreab; Nancy Li; Nicolas Simonis; Tong Hao; Jean François Rual; Amélie Dricot; Alexei Vazquez; Ryan R. Murray; Christophe Simon; Leah Tardivo; Stanley Tam; Nenad Svrzikapa; Changyu Fan; Anne-Sophie De Smet; Adriana Motyl; Michael E. Hudson; Juyong Park; Xiaofeng Xin; Michael E. Cusick; Troy Moore; Charlie Boone; Michael Snyder; Frederick P. Roth

Current yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome data sets, demonstrating that high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary interaction information. Because a large fraction of the yeast binary interactome remains to be mapped, we developed an empirically controlled mapping framework to produce a “second-generation” high-quality, high-throughput Y2H data set covering ∼20% of all yeast binary interactions. Both Y2H and affinity purification followed by mass spectrometry (AP/MS) data are of equally high quality but of a fundamentally different and complementary nature, resulting in networks with different topological and biological properties. Compared to co-complex interactome models, this binary map is enriched for transient signaling interactions and intercomplex connections with a highly significant clustering between essential proteins. Rather than correlating with essentiality, protein connectivity correlates with genetic pleiotropy.


Molecular Systems Biology | 2009

Edgetic perturbation models of human inherited disorders

Quan Zhong; Nicolas Simonis; Qian -Ru Li; Benoit Charloteaux; Fabien Heuze; Niels Klitgord; Stanley Tam; Haiyuan Yu; Kavitha Venkatesan; Danny Mou; Venus Swearingen; Muhammed A. Yildirim; Han Yan; Amélie Dricot; David Szeto; Chenwei Lin; Tong Hao; Changyu Fan; Denis Dupuy; Robert Brasseur; David E. Hill; Michael E. Cusick; Marc Vidal

Cellular functions are mediated through complex systems of macromolecules and metabolites linked through biochemical and physical interactions, represented in interactome models as ‘nodes’ and ‘edges’, respectively. Better understanding of genotype‐to‐phenotype relationships in human disease will require modeling of how disease‐causing mutations affect systems or interactome properties. Here we investigate how perturbations of interactome networks may differ between complete loss of gene products (‘node removal’) and interaction‐specific or edge‐specific (‘edgetic’) alterations. Global computational analyses of ∼50 000 known causative mutations in human Mendelian disorders revealed clear separations of mutations probably corresponding to those of node removal versus edgetic perturbations. Experimental characterization of mutant alleles in various disorders identified diverse edgetic interaction profiles of mutant proteins, which correlated with distinct structural properties of disease proteins and disease mechanisms. Edgetic perturbations seem to confer distinct functional consequences from node removal because a large fraction of cases in which a single gene is linked to multiple disorders can be modeled by distinguishing edgetic network perturbations. Edgetic network perturbation models might improve both the understanding of dissemination of disease alleles in human populations and the development of molecular therapeutic strategies.


Nature | 2012

Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins

Orit Rozenblatt-Rosen; Rahul C. Deo; Megha Padi; Guillaume Adelmant; Michael A. Calderwood; Thomas Rolland; Miranda Grace; Amélie Dricot; Manor Askenazi; Maria Lurdes Tavares; Sam Pevzner; Fieda Abderazzaq; Danielle Byrdsong; Anne-Ruxandra Carvunis; Alyce A. Chen; Jingwei Cheng; Mick Correll; Melissa Duarte; Changyu Fan; Scott B. Ficarro; Rachel Franchi; Brijesh K. Garg; Natali Gulbahce; Tong Hao; Amy M. Holthaus; Robert James; Anna Korkhin; Larisa Litovchick; Jessica C. Mar; Theodore R. Pak

Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype–phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations, and large numbers of somatic genomic alterations, associated with a predisposition to cancer. However, it remains difficult to distinguish background, or ‘passenger’, cancer mutations from causal, or ‘driver’, mutations in these data sets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. Here we test the hypothesis that genomic variations and tumour viruses may cause cancer through related mechanisms, by systematically examining host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways, such as Notch signalling and apoptosis, that go awry in cancer. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on a par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches increase the specificity of cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate the prioritization of cancer-causing driver genes to advance the understanding of the genetic basis of human cancer.


Infection and Immunity | 2003

Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice

Pascal Lestrate; Amélie Dricot; Rose-May Delrue; Christophe Lambert; V. Martinelli; X. De Bolle; Jean-Jacques Letesson; Anne Tibor

ABSTRACT For this study, we screened 1,152 signature-tagged mutagenesis mutants of Brucella melitensis 16M in a mouse model of infection and found 36 of them to be attenuated in vivo. Molecular characterization of transposon insertion sites showed that for four mutants, the affected genes were only present in Rhizobiaceae. Another mutant contained a disruption in a gene homologous to mosA, which is involved in rhizopine biosynthesis in some strains of Rhizobium, suggesting that this sugar may be involved in Brucella pathogenicity. A mutant was disrupted in a gene homologous to fliF, a gene potentially coding for the MS ring, a basal component of the flagellar system. Surprisingly, a mutant was affected in the rpoA gene, coding for the essentialα -subunit of the RNA polymerase. This disruption leaves a partially functional protein, impaired for the activation of virB transcription, as demonstrated by the absence of induction of the virB promoter in the Tn5::rpoA background. The results presented here highlight the fact that the ability of Brucella to induce pathogenesis shares similarities with the molecular mechanisms used by both Rhizobium and Agrobacterium to colonize their hosts.


PLOS Computational Biology | 2012

Viral perturbations of host networks reflect disease etiology.

Natali Gulbahce; Han Yan; Amélie Dricot; Megha Padi; Danielle Byrdsong; Rachel Franchi; Deok Sun Lee; Orit Rozenblatt-Rosen; Jessica C. Mar; Michael A. Calderwood; Amy Baldwin; Bo Zhao; Balaji Santhanam; Pascal Braun; Nicolas Simonis; Kyung Won Huh; Karin Hellner; Miranda Grace; Alyce Chen; Renee Rubio; Jarrod A. Marto; Nicholas A. Christakis; Elliott Kieff; Frederick P. Roth; Jennifer Roecklein-Canfield; James A. DeCaprio; Michael E. Cusick; John Quackenbush; David E. Hill; Karl Münger

Many human diseases, arising from mutations of disease susceptibility genes (genetic diseases), are also associated with viral infections (virally implicated diseases), either in a directly causal manner or by indirect associations. Here we examine whether viral perturbations of host interactome may underlie such virally implicated disease relationships. Using as models two different human viruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), we find that host targets of viral proteins reside in network proximity to products of disease susceptibility genes. Expression changes in virally implicated disease tissues and comorbidity patterns cluster significantly in the network vicinity of viral targets. The topological proximity found between cellular targets of viral proteins and disease genes was exploited to uncover a novel pathway linking HPV to Fanconi anemia.


Retrovirology | 2012

Host-Pathogen Interactome Mapping for HTLV-1 and -2 Retroviruses

Nicolas Simonis; Jean François Rual; Irma Lemmens; Mathieu Boxus; Tomoko Hirozane-Kishikawa; Jean Stéphane Gatot; Amélie Dricot; Tong Hao; Didier Vertommen; Sebastien Legros; Sarah Daakour; Niels Klitgord; Maud Martin; Jean François Willaert; Franck Dequiedt; Vincent Navratil; Michael E. Cusick; Arsène Burny; Carine Van Lint; David E. Hill; Jan Tavernier; Richard Kettmann; Marc Vidal; Jean-Claude Twizere

BackgroundHuman T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression.ResultsWe employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway.ConclusionsThis study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.


Veterinary Microbiology | 2002

Fun stories about Brucella: the "furtive nasty bug".

Jean-Jacques Letesson; Pascal Lestrate; Rose-May Delrue; Isabelle Danese; Flore Bellefontaine; David Fretin; Bernard Taminiau; Anne Tibor; Amélie Dricot; Chantal Deschamps; Valérie Haine; Sandrine Leonard; Thierry Laurent; Pascal Mertens; Jean Vandenhaute; X. De Bolle

Although Brucella is responsible for one of the major worldwide zoonosis, our understanding of its pathogenesis remains in its infancy. In this paper, we summarize some of the research in progress in our laboratory that we think could contribute to a better understanding of the Brucella molecular virulence mechanisms and their regulation.


Molecular Systems Biology | 2016

An inter-species protein-protein interaction network across vast evolutionary distance.

Quan Zhong; Samuel J. Pevzner; Tong Hao; Yang Wang; Roberto Mosca; Jörg Menche; Mikko Taipale; Murat Tasan; Changyu Fan; Xinping Yang; Patrick J. Haley; Ryan R. Murray; Flora Mer; Fana Gebreab; Stanley Tam; Andrew MacWilliams; Amélie Dricot; Patrick Reichert; Balaji Santhanam; Lila Ghamsari; Michael A. Calderwood; Thomas Rolland; Benoit Charloteaux; Susan Lindquist; Albert-László Barabási; David E. Hill; Patrick Aloy; Michael E. Cusick; Yu Xia; Frederick P. Roth

In cellular systems, biophysical interactions between macromolecules underlie a complex web of functional interactions. How biophysical and functional networks are coordinated, whether all biophysical interactions correspond to functional interactions, and how such biophysical‐versus‐functional network coordination is shaped by evolutionary forces are all largely unanswered questions. Here, we investigate these questions using an “inter‐interactome” approach. We systematically probed the yeast and human proteomes for interactions between proteins from these two species and functionally characterized the resulting inter‐interactome network. After a billion years of evolutionary divergence, the yeast and human proteomes are still capable of forming a biophysical network with properties that resemble those of intra‐species networks. Although substantially reduced relative to intra‐species networks, the levels of functional overlap in the yeast–human inter‐interactome network uncover significant remnants of co‐functionality widely preserved in the two proteomes beyond human–yeast homologs. Our data support evolutionary selection against biophysical interactions between proteins with little or no co‐functionality. Such non‐functional interactions, however, represent a reservoir from which nascent functional interactions may arise.


Nature Methods | 2009

An empirical framework for binary interactome mapping.

Kavitha Venkatesan; Jean François Rual; Alexei Vazquez; Ulrich Stelzl; Irma Lemmens; Tomoko Hirozane-Kishikawa; Tong Hao; Martina Zenkner; Xiaofeng Xin; K. I. Goh; Muhammed A. Yildirim; Nicolas Simonis; Kathrin Heinzmann; Fana Gebreab; Julie M. Sahalie; Sebiha Cevik; Christophe Simon; Anne Sophie de Smet; Elizabeth Dann; Alex Smolyar; Arunachalam Vinayagam; Haiyuan Yu; David Szeto; Heather Borick; Amélie Dricot; Niels Klitgord; Ryan R. Murray; Chenwei Lin; Maciej Lalowski; Jan Timm

Collaboration


Dive into the Amélie Dricot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael E. Cusick

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Simonis

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge