Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amélie Leforestier is active.

Publication


Featured researches published by Amélie Leforestier.


The EMBO Journal | 2004

Cryo-electron microscopy of vitreous sections

Ashraf Al-Amoudi; Jiin-Ju Chang; Amélie Leforestier; A. W. McDowall; Laurée Michel Salamin; Lars Norlén; Karsten Richter; Nathalie Sartori Blanc; Daniel Studer; Jacques Dubochet

Since the beginning of the 1980s, cryo‐electron microscopy of a thin film of vitrified aqueous suspension has made it possible to observe biological particles in their native state, in the absence of the usual artefacts of dehydration and staining. Combined with 3‐d reconstruction, it has become an important tool for structural molecular biology. Larger objects such as cells and tissues cannot generally be squeezed in a thin enough film. Cryo‐electron microscopy of vitreous sections (CEMOVIS) provides then a solution. It requires vitrification of a sizable piece of biological material and cutting it into ultrathin sections, which are observed in the vitrified state. Each of these operations raises serious difficulties that have now been overcome. In general, the native state seen with CEMOVIS is very different from what has been seen before and it is seen in more detail. CEMOVIS will give its full potential when combined with computerized electron tomography for 3‐d reconstruction.


Biophysical Journal | 2002

Salt-Induced Conformation and Interaction Changes of Nucleosome Core Particles

Stéphanie Mangenot; Amélie Leforestier; Patrice Vachette; D. Durand; Françoise Livolant

Small angle x-ray scattering was used to follow changes in the conformation and interactions of nucleosome core particles (NCP) as a function of the monovalent salt concentration C(s). The maximal extension (D(max)) of the NCP (145 +/- 3-bp DNA) increases from 137 +/- 5 A to 165 +/- 5 A when C(s) rises from 10 to 50 mM and remains constant with further increases of C(s) up to 200 mM. In view of the very weak increase of the R(g) value in the same C(s) range, we attribute this D(max) variation to tail extension, a proposal confirmed by simulations of the entire I(q) curves, considering an ideal solution of particles with tails either condensed or extended. This tail extension is observed at higher salt values when particles contain longer DNA fragments (165 +/- 10 bp). The maximal extension of the tails always coincides with the screening of repulsive interactions between particles. The second virial coefficient becomes smaller than the hard sphere virial coefficient and eventually becomes negative (net attractive interactions) for NCP(145). Addition of salt simultaneously screens Coulombic repulsive interactions between NCP and Coulombic attractive interactions between tails and DNA inside the NCP. We discuss how the coupling of these two phenomena may be of biological relevance.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structure of toroidal DNA collapsed inside the phage capsid

Amélie Leforestier; Françoise Livolant

The structure of DNA toroids made of individual DNA molecules of various lengths (3,000 to 55,000 bp) was studied, by using partially filled bacteriophage capsids in conjunction with cryoelectron microscopy. The tetravalent cation spermine was diffused through the capsid to condense the DNA under conditions that were chosen to produce a hexagonal packing. Our results demonstrate that the frustration arising between chirality and hexagonal packing leads to the formation of twist walls; the correlation between helices combined with their strong curvature impose variations of the DNA helical pitch.


Biophysical Journal | 2001

Bilayers of Nucleosome Core Particles

Amélie Leforestier; Jacques Dubochet; Françoise Livolant

Among the multiple effects involved in chromatin condensation and decondensation processes, interactions between nucleosome core particles are suspected to play a crucial role. We analyze them in the absence of linker DNA and added proteins, after the self-assembly of isolated nucleosome core particles under controlled ionic conditions. We describe an original lamellar mesophase forming tubules on the mesoscopic scale. High resolution imaging of cryosections of vitrified samples reveals how nucleosome core particles stack on top of one another into columns which themselves align to form bilayers that repel one another through a solvent layer. We deduce from this structural organization how the particles interact through attractive interactions between top and bottom faces and lateral polar interactions that originate in the heterogeneous charge distribution at the surface of the particle. These interactions, at work under conditions comparable with those found in the living cell, should be of importance in the mechanisms governing chromatin compaction in vivo.


Journal of Molecular Biology | 2010

The bacteriophage genome undergoes a succession of intracapsid phase transitions upon DNA ejection.

Amélie Leforestier; Françoise Livolant

Double-stranded DNA bacteriophage genomes are densely packaged into capsids until the ejection is triggered upon interaction of the tail with the bacterial receptor. Using cryo-electron microscopy, we describe the organization of the genome in the full capsid of T5 and show how it undergoes a series of phase transitions upon progressive ejection when the encapsidated DNA length decreases. Monodomains of hexagonally crystallized DNA segments initially form a three-dimensional lattice of defects. The structure turns liquid crystalline (two-dimensional hexagonal and then cholesteric) and finally isotropic. These structures suggest a mechanism in which defects of the full capsid would initiate the ejection and introduce the necessary fluidity to relax the constrained mosaic crystal to let the genome start flowing out of the capsid.


Biophysical Journal | 1997

Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase.

Amélie Leforestier; Françoise Livolant

Macromolecular crowding conditions occurring inside the cell nucleus were reproduced experimentally with solutions of mononucleosome core particles to study their supramolecular organization. We report here that under these conditions, and over a large range of monovalent salt concentrations, mononucleosome core particles self-assemble to form a discotic liquid crystalline phase characterized in polarizing and freeze-fracture electron microscopy. Mononucleosomes are stacked on each other to form columns, which are themselves closely packed into an hexagonal array. The nucleosome concentration, estimated from the network parameters, falls in the range of values measured in cell nuclei. We suggest that these concentrated solutions, although their organization cannot be immediately compared to the organization of chromatin in vivo, may be used to investigate the nucleosome-nucleosome interactions. Furthermore, this approach may be complexified to take into account the complexity of the eucaryotic chromatin.


Biophysical Journal | 2000

Chiral Discotic Columnar Germs of Nucleosome Core Particles

Françoise Livolant; Amélie Leforestier

In concentrated solution and in the presence of high concentrations of monovalent cations, nucleosome core particles order into a discotic columnar mesophase. This phase is limited to finite-sized hexagonal germs that further divide into six coiled branches, following an iterative process. We show how the structure of the germs comes from the competition between hexagonal packing and chirality with a combination of dendritic facetting and double-twist configurations. Geometrical considerations lead us to suspect that the chirality of the eukaryotic chromosomes may originate from the same competition.


Journal of Molecular Biology | 2008

Bacteriophage T5 DNA Ejection under Pressure

Amélie Leforestier; S. Brasilès; M. de Frutos; Eric Raspaud; Lucienne Letellier; Paulo Tavares; Françoise Livolant

The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for lambda and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and lambda, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.


Biophysical Journal | 2003

X-ray diffraction characterization of the dense phases formed by nucleosome core particles.

Stéphanie Mangenot; Amélie Leforestier; D. Durand; Françoise Livolant

Multiple dense phases of nucleosome core particles (NCPs) were formed in controlled ionic conditions (15-160 mM monovalent salt, no divalent ions), under osmotic pressures ranging from 4.7 x 10(5) to 2.35 x 10(6) Pa. We present here the x-ray diffraction analysis of these phases. In the lamello-columnar phase obtained at low salt concentration (<25 mM), NCPs stack into columns that align to form bilayers, kept separated from one another by a layer of solvent. NCPs form a monoclinic lattice in the plane of the bilayer. For high salt concentration (>50 mM), NCPs order into either a two-dimensional columnar hexagonal phase or into three-dimensional orthorhombic (quasi-hexagonal) crystals. The lamellar and hexagonal (or quasi-hexagonal) organizations coexist in the intermediate salt range; their demixing requires a long time. For an applied pressure P = 4.7 10(5) Pa, the calculated NCPs concentration ranges from approximately 280 to 320 mg/ml in the lamello-columnar phase to 495 to 585 mg/ml in the three-dimensional orthorhombic phase. These concentrations cover the concentration of the living cell.


Biophysical Journal | 2011

Protein-DNA Interactions Determine the Shapes of DNA Toroids Condensed in Virus Capsids

Amélie Leforestier; Antonio Šiber; Françoise Livolant; Rudolf Podgornik

DNA toroids that form inside the bacteriophage capsid present different shapes according to whether they are formed by the addition of spermine or polyethylene glycol to the bathing solution. Spermine-DNA toroids present a convex, faceted section with no or minor distortions of the DNA interstrand spacing with respect to those observed in the bulk, whereas polyethylene glycol-induced toroids are flattened to the capsid inner surface and show a crescent-like, nonconvex shape. By modeling the energetics of the DNA toroid using a free-energy functional composed of energy contributions related to the elasticity of the wound DNA, exposed surface DNA energy, and adhesion between the DNA and the capsid, we established that the crescent shape of the toroidal DNA section comes from attractive interactions between DNA and the capsid. Such attractive interactions seem to be specific to the PEG condensation process and are not observed in the case of spermine-induced DNA condensation.

Collaboration


Dive into the Amélie Leforestier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Durand

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Raspaud

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge