Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amélie Segarra is active.

Publication


Featured researches published by Amélie Segarra.


Virus Research | 2010

Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008

Amélie Segarra; Jean François Pépin; Isabelle Arzul; Benjamin Morga; Nicole Faury; Tristan Renault

Ostreid herpesvirus 1 (OsHV-1) infections have been reported around the world and are associated with high mortalities of the Pacific oyster (Crassostrea gigas). In the summer 2008, abnormal mortality rates ranging from 80% to 100% were reported in France and affected only Pacific oysters. Analyses of oyster samples collected during mortality outbreaks demonstrated a significant detection of OsHV-1 (75% of analysed batches), which appeared stronger than previous years. DNA sequencing based on C and IA regions was carried out on 28 batches of OsHV-1 infected Pacific oysters collected in 2008. Polymorphisms were described in both the C and IA regions and characterized a genotype of OsHV-1 not already reported and termed OsHV-1 microVar. A microsatellite zone present in the C region showed several deletions. Additionally, 44 isolates collected in France and in the USA, from 1995 to 2007 were sequenced and compared to the 2008 sequences. The analyses of 76 sequences showed OsHV-1 microVar detection only in 2008 isolates. These data suggest that OsHV-1 microVar can be assumed as an emergent genotype.


BMC Genomics | 2014

Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1

Amélie Segarra; Florian Mauduit; Nicole Faury; Suzanne Trancart; Lionel Degremont; Delphine Tourbiez; Valérie Barbosa-Solomieu; Jean-Francois Pepin; Marie-Agnès Travers; Tristan Renault

BackgroundMassive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches.ResultsThe divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus.ConclusionsIn the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.


Developmental and Comparative Immunology | 2011

Molecular responses of Ostrea edulis haemocytes to an in vitro infection with Bonamia ostreae

Benjamin Morga; Isabelle Arzul; Nicole Faury; Amélie Segarra; Bruno Chollet; Tristan Renault

Bonamiosis due to the parasite Bonamia ostreae is a disease affecting the flat oyster Ostrea edulis. B. ostreae is a protozoan, affiliated to the order of haplosporidia and to the cercozoan phylum. This parasite is mainly intracellular, infecting haemocytes, cells notably involved in oyster defence mechanisms. Suppression subtractive hybridisation (SSH) was carried out in order to identify oyster genes differentially expressed during an infection of haemocytes with B. ostreae. Forward and reverse banks allowed obtaining 1104 and 1344 clones respectively, among which 391 and 480 clones showed a differential expression between both tested conditions (haemocytes alone versus haemocytes in contact with parasites). ESTs of interest including genes involved in cytoskeleton, respiratory chain, detoxification membrane receptors, and immune system were identified. The open reading frames of two selected genes (galectin and IRF-like) were completely sequenced and characterized. Real time PCR assays were developed to study the relative expression of candidate ESTs during an in vitro infection of haemocytes by live and dead parasites. Haemocyte infection with B. ostreae induced an increased expression of omega glutathione S-transferase (OGST), superoxide dismutase (SOD), tissue inhibitor of metalloproteinase (TIMP), galectin, interferon regulatory factor (IRF-like) and filamin genes.


Autophagy | 2015

Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

Pierrick Moreau; Kevin Moreau; Amélie Segarra; Delphine Tourbiez; Marie-Agnès Travers; David C. Rubinsztein; Tristan Renault

Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.


Journal of Invertebrate Pathology | 2014

Transcriptomic study of 39 ostreid herpesvirus 1 genes during an experimental infection.

Amélie Segarra; Nicole Faury; Jean-Francois Pepin; Tristan Renault

Massive mortality outbreaks have been reported in France since 2008 among Pacific oysters, Crassostrea gigas, with the detection of a particular OsHV-1 variant called μVar. Virus infection can be induced in healthy spat in experimental conditions allowing to better understand the disease process, including viral gene expression. Although gene expression of other herpesviruses has been widely studied, we provide the first study following viral gene expression of OsHV-1 over time. In this context, an in vivo transcriptomic study targeting 39 OsHV-1 genes was carried out during an experimental infection of Pacific oyster spat. For the first time, several OsHV-1 mRNAs were detected by real-time PCR at 0 h, 2 h, 4 h, 18 h, 26 h and 42 h post-injection. Several transcripts were detected at 2h post-infection and at 18 h post-infection for all selected ORFs. Quantification of virus gene expression at different times of infection was also carried out using an oyster housekeeping gene, Elongation factor. Developing an OsHV-1-specific reverse transcriptase real time PCR targeting 39 viral gene appears a new tool in terms of diagnosis and can be used to complement viral DNA detection in order to monitor viral replication.


Veterinary Research | 2014

Ostreid herpesvirus type 1 replication and host response in adult Pacific oysters, Crassostrea gigas.

Amélie Segarra; Laury Baillon; Delphine Tourbiez; Abdellah Benabdelmouna; Nicole Faury; Nathalie Bourgougnon; Tristan Renault

Since 2008, massive mortality outbreaks associated with OsHV-1 detection have been reported in Crassostrea gigas spat and juveniles in several countries. Nevertheless, adult oysters do not demonstrate mortality in the field related to OsHV-1 detection and were thus assumed to be more resistant to viral infection. Determining how virus and adult oyster interact is a major goal in understanding why mortality events are not reported among adult Pacific oysters. Dual transcriptomics of virus-host interactions were explored by real-time PCR in adult oysters after a virus injection. Thirty-nine viral genes and five host genes including MyD88, IFI44, IkB2, IAP and Gly were measured at 0.5, 10, 26, 72 and 144 hours post infection (hpi). No viral RNA among the 39 genes was detected at 144 hpi suggesting the adult oysters are able to inhibit viral replication. Moreover, the IAP gene (oyster gene) shows significant up-regulation in infected adults compared to control adults. This result suggests that over-expression of IAP could be a reaction to OsHV-1 infection, which may induce the apoptotic process. Apoptosis could be a main mechanism involved in disease resistance in adults. Antiviral activity of haemolymph against herpes simplex virus (HSV-1) was not significantly different between infected adults versus control.


Veterinary Research | 2014

Genotyping of a microsatellite locus to differentiate clinical Ostreid herpesvirus 1 specimens

Tristan Renault; Gwenaëlle Tchaleu; Nicole Faury; Pierrick Moreau; Amélie Segarra; Valérie Barbosa-Solomieu; Sylvie Lapegue

Ostreid herpesvirus 1 (OsHV-1) is a DNA virus belonging to the Malacoherpesviridae family from the Herpesvirales order. OsHV-1 has been associated with mortality outbreaks in different bivalve species including the Pacific cupped oyster, Crassostrea gigas. Since 2008, massive mortality events have been reported among C. gigas in Europe in relation to the detection of a variant of OsHV-1, called μVar. Since 2009, this variant has been mainly detected in France. These results raise questions about the emergence and the virulence of this variant. The search for association between specific virus genetic markers and clinical symptoms is of great interest and the characterization of the genetic variability of OsHV-1 specimens is an area of growing interest. Determination of nucleotide sequences of PCR-amplified virus DNA fragments has already been used to characterize OsHV-1 specimens and virus variants have thus been described. However, the virus DNA sequencing approach is time-consuming in the high-scale format. Identification and genotyping of highly polymorphic microsatellite loci appear as a suitable approach. The main objective of the present study was the development of a genotyping method in order to characterise clinical OsHV-1 specimens by targeting a particular microsatellite locus located in the ORF4 area. Genotyping results were compared to sequences already available. An excellent correlation was found between the detected genotypes and the corresponding sequences showing that the genotyping approach allowed an accuraté discrimination between virus specimens.


Journal of Virological Methods | 2015

Development of an in situ hybridization assay for the detection of ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas

Serge Corbeil; Nicole Faury; Amélie Segarra; Tristan Renault

An in situ hybridization protocol for detecting mRNAs of ostreid herpesvirus type 1 (OsHV-1) which infects Pacific oysters, Crassostrea gigas, was developed. Three RNA probes were synthesized by cloning three partial OsHV-1 genes into plasmids using three specific primer pairs, and performing a transcription in the presence of digoxigenin dUTP. The RNA probes were able to detect the virus mRNAs in paraffin sections of experimentally infected oysters 26 h post-injection. The in situ hybridization showed that the OsHV-1 mRNAs were mainly present in connective tissues in gills, mantle, adductor muscle, digestive gland and gonads. DNA detection by in situ hybridization using a DNA probe and viral DNA quantitation by real-time PCR were also performed and results were compared with those obtained using RNA probes.


Journal of Invertebrate Pathology | 2016

In situ localization and tissue distribution of ostreid herpesvirus 1 proteins in infected Pacific oyster, Crassostrea gigas

Claire Martenot; Amélie Segarra; Laury Baillon; Nicole Faury; Maryline Houssin; Tristan Renault

Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the early infection stages of OsHV-1 infection and a useful tool to investigate interactions between OsHV-1 and its host at a protein level.


Journal of Invertebrate Pathology | 2016

Detection and distribution of ostreid herpesvirus 1 in experimentally infected Pacific oyster spat.

Amélie Segarra; Laury Baillon; Nicole Faury; Delphine Tourbiez; Tristan Renault

High mortality rates are reported in spat and larvae of Pacific oyster Crassostrea gigas and associated with ostreid herpesvirus 1 (OsHV-1) detection in France. Although the viral infection has been experimentally reproduced in oyster larvae and spat, little knowledge is currently available concerning the viral entry and its distribution in organs and tissues. This study compares OsHV-1 DNA and RNA detection and localization in experimentally infected oysters using two virus doses: a low dose that did not induce any mortality and a high dose inducing high mortality. Real time PCR demonstrated significant differences in terms of viral DNA amounts between the two virus doses. RNA transcripts were detected in oysters receiving the highest dose of viral suspension whereas no transcript was observed in oysters injected with the low dose. This study also allowed observing kinetics of viral DNA and RNA detection in different tissues of oyster spat. Finally, viral detection was significantly different in function of tissues (p<0.005), time (p<0.005) with an interaction between tissues and time (p<0.005) for each probe.

Collaboration


Dive into the Amélie Segarra's collaboration.

Researchain Logo
Decentralizing Knowledge