Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amelie T. van der Ven is active.

Publication


Featured researches published by Amelie T. van der Ven.


Journal of The American Society of Nephrology | 2017

Exome Sequencing Discerns Syndromes in Patients from Consanguineous Families with Congenital Anomalies of the Kidneys and Urinary Tract

Asaf Vivante; Daw-Yang Hwang; Stefan Kohl; Jing Chen; Shirlee Shril; Julian Schulz; Amelie T. van der Ven; Ghaleb Daouk; Neveen A. Soliman; Aravind Selvin Kumar; Prabha Senguttuvan; Elijah O. Kehinde; Velibor Tasic; Friedhelm Hildebrandt

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease-causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1 Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease-causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology-based diagnosis and improved clinical management.


Human Mutation | 2015

Targeted Resequencing of 29 Candidate Genes and Mouse Expression Studies Implicate ZIC3 and FOXF1 in Human VATER/VACTERL Association

Alina C. Hilger; Jan Halbritter; Tracie Pennimpede; Amelie T. van der Ven; Georgia Sarma; Daniela A. Braun; Jonathan D. Porath; Stefan Kohl; Daw-Yang Hwang; Gabriel C. Dworschak; Bernhard G. Hermann; A. Pavlova; Osman El-Maarri; Markus M. Nöthen; Michael Ludwig; Heiko Reutter; Friedhelm Hildebrandt

The VATER/VACTERL association describes the combination of congenital anomalies including vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects. As mutations in ciliary genes were observed in diseases related to VATER/VACTERL, we performed targeted resequencing of 25 ciliary candidate genes as well as disease‐associated genes (FOXF1, HOXD13, PTEN, ZIC3) in 123 patients with VATER/VACTERL or VATER/VACTERL‐like phenotype. We detected no biallelic mutation in any of the 25 ciliary candidate genes; however, identified an identical, probably disease‐causing ZIC3 missense mutation (p.Gly17Cys) in four patients and a FOXF1 de novo mutation (p.Gly220Cys) in a further patient. In situ hybridization analyses in mouse embryos between E9.5 and E14.5 revealed Zic3 expression in limb and prevertebral structures, and Foxf1 expression in esophageal, tracheal, vertebral, anal, and genital tubercle tissues, hence VATER/VACTERL organ systems. These data provide strong evidence that mutations in ZIC3 or FOXF1 contribute to VATER/VACTERL.


Clinical Journal of The American Society of Nephrology | 2018

Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome

Jillian K. Warejko; Weizhen Tan; Ankana Daga; David Schapiro; Jennifer A. Lawson; Shirlee Shril; Svjetlana Lovric; Shazia Ashraf; Jia Rao; Tobias Hermle; Tilman Jobst-Schwan; Eugen Widmeier; Amar J. Majmundar; Ronen Schneider; Heon Yung Gee; J. Magdalena Schmidt; Asaf Vivante; Amelie T. van der Ven; Hadas Ityel; Jing Chen; Carolin E. Sadowski; Stefan Kohl; Werner L. Pabst; Makiko Nakayama; Michael J. Somers; Nancy Rodig; Ghaleb Daouk; Michelle A. Baum; Deborah Stein; Michael A. J. Ferguson

BACKGROUND AND OBJECTIVES Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. RESULTS In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. CONCLUSIONS Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome.


Journal of The American Society of Nephrology | 2017

A Dominant Mutation in Nuclear Receptor Interacting Protein 1 Causes Urinary Tract Malformations via Dysregulation of Retinoic Acid Signaling

Asaf Vivante; Nina Mann; Hagith Yonath; Anna-Carina Weiss; Maike Getwan; Michael M. Kaminski; Tobias Bohnenpoll; Catherine Teyssier; Jing Chen; Shirlee Shril; Amelie T. van der Ven; Hadas Ityel; Johanna Magdalena Schmidt; Eugen Widmeier; Stuart B. Bauer; Simone Sanna-Cherchi; Ali G. Gharavi; Weining Lu; Daniella Magen; Rachel Shukrun; Richard P. Lifton; Velibor Tasic; Horia Stanescu; Vincent Cavaillès; Robert Kleta; Yair Anikster; Benjamin Dekel; Andreas Kispert; Soeren S. Lienkamp; Friedhelm Hildebrandt

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of CKD in the first three decades of life. However, for most patients with CAKUT, the causative mutation remains unknown. We identified a kindred with an autosomal dominant form of CAKUT. By whole-exome sequencing, we identified a heterozygous truncating mutation (c.279delG, p.Trp93fs*) of the nuclear receptor interacting protein 1 gene (NRIP1) in all seven affected members. NRIP1 encodes a nuclear receptor transcriptional cofactor that directly interacts with the retinoic acid receptors (RARs) to modulate retinoic acid transcriptional activity. Unlike wild-type NRIP1, the altered NRIP1 protein did not translocate to the nucleus, did not interact with RARα, and failed to inhibit retinoic acid-dependent transcriptional activity upon expression in HEK293 cells. Notably, we also showed that treatment with retinoic acid enhanced NRIP1 binding to RARα RNA in situ hybridization confirmed Nrip1 expression in the developing urogenital system of the mouse. In explant cultures of embryonic kidney rudiments, retinoic acid stimulated Nrip1 expression, whereas a pan-RAR antagonist strongly reduced it. Furthermore, mice heterozygous for a null allele of Nrip1 showed a CAKUT-spectrum phenotype. Finally, expression and knockdown experiments in Xenopus laevis confirmed an evolutionarily conserved role for NRIP1 in renal development. These data indicate that dominant NRIP1 mutations can cause CAKUT by interference with retinoic acid transcriptional signaling, shedding light on the well documented association between abnormal vitamin A levels and renal malformations in humans, and suggest a possible gene-environment pathomechanism in this disease.


Nature Communications | 2018

Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment

Shazia Ashraf; Hiroki Kudo; Jia Rao; Atsuo Kikuchi; Eugen Widmeier; Jennifer A. Lawson; Weizhen Tan; Tobias Hermle; Jillian K. Warejko; Shirlee Shril; Merlin Airik; Tilman Jobst-Schwan; Svjetlana Lovric; Daniela A. Braun; Heon Yung Gee; David Schapiro; Amar J. Majmundar; Carolin E. Sadowski; Werner L. Pabst; Ankana Daga; Amelie T. van der Ven; Johanna Magdalena Schmidt; Boon Chuan Low; Anjali Gupta; Brajendra K. Tripathi; Jenny S. Wong; Kirk N. Campbell; Kay Metcalfe; Denny Schanze; Tetsuya Niihori

No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.Nephrotic syndrome is the second most common chronic kidney disease but there are no targeted treatment strategies available. Here the authors identify mutations of six genes codifying for proteins involved in cytoskeleton remodelling and modulation of small GTPases in 17 families with nephrotic syndrome.


Journal of The American Society of Nephrology | 2017

Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract

Amelie T. van der Ven; Asaf Vivante; Friedhelm Hildebrandt

Congenital anomalies of the kidneys and urinary tract (CAKUT) comprise a large spectrum of congenital malformations ranging from severe manifestations, such as renal agenesis, to potentially milder conditions, such as vesicoureteral reflux. CAKUT causes approximately 40% of ESRD that manifests within the first three decades of life. Several lines of evidence indicate that CAKUT is often caused by recessive or dominant mutations in single (monogenic) genes. To date, approximately 40 monogenic genes are known to cause CAKUT if mutated, explaining 5%-20% of patients. However, hundreds of different monogenic CAKUT genes probably exist. The discovery of novel CAKUT-causing genes remains challenging because of this pronounced heterogeneity, variable expressivity, and incomplete penetrance. We here give an overview of known genetic causes for human CAKUT and shed light on distinct renal morphogenetic pathways that were identified as relevant for CAKUT in mice and humans.


Nephrology Dialysis Transplantation | 2016

Targeted sequencing of 96 renal developmental microRNAs in 1213 individuals from 980 families with congenital anomalies of the kidney and urinary tract.

Stefan Kohl; Jing Chen; Asaf Vivante; Daw Yang Hwang; Shirlee Shril; Gabriel C. Dworschak; Amelie T. van der Ven; Simone Sanna-Cherchi; Stuart B. Bauer; Richard S. Lee; Neveen A. Soliman; Elijah O. Kehinde; Heiko Reutter; Velibor Tasic; Friedhelm Hildebrandt

BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney diseases in children and young adults, accounting for ∼50% of cases. These anomalies represent maldevelopment of the genitourinary system and can be genetically explained in only 10-16% of cases by mutations or by copy number variations in protein coding sequences. Knock-out mouse models, lacking components of the microRNA (miRNA) processing machinery (i.e. Dicer, Drosha, Dgcr8), exhibit kidney malformations resembling human CAKUT. METHODS Given the Dicer-null mouse phenotype, which implicates a central role for miRNAs gene regulation during kidney development, we hypothesized that miRNAs expressed during kidney development may cause CAKUT in humans if mutated. To evaluate this possibility we carried out Next-Generation sequencing of 96 stem-loop regions of 73 renal developmental miRNA genes in 1248 individuals with non-syndromic CAKUT from 980 families. RESULTS We sequenced 96 stem-loop regions encoded by 73 miRNA genes that are expressed during kidney development in humans, mice and rats. Overall, we identified in 31/1213 individuals from 26 families with 17 different single nucleotide variants. Two variants did not segregate with the disease and hence were not causative. Thirteen variants were likely benign variants because they occurred in control populations and/or they affected nucleotides of weak evolutionary conservation. Two out of 1213 unrelated individuals had potentially pathogenic variants with unknown biologic relevance affecting miRNAs MIR19B1 and MIR99A. CONCLUSIONS Our results indicate that mutations affecting mature microRNAs in individuals with CAKUT are rare and thus most likely not a common cause of CAKUT in humans.


Pediatric Nephrology | 2017

Exome sequencing in Jewish and Arab patients with rhabdomyolysis reveals single-gene etiology in 43% of cases

Asaf Vivante; Hadas Ityel; Ben Pode-Shakked; Jing Chen; Shirlee Shril; Amelie T. van der Ven; Nina Mann; Johanna Magdalena Schmidt; Reeval Segel; Adi Aran; Avraham Zeharia; Orna Staretz-Chacham; O. Bar-Yosef; Annick Raas-Rothschild; Yuval E. Landau; Richard P. Lifton; Yair Anikster; Friedhelm Hildebrandt

BackgroundRhabdomyolysis is a clinical emergency that may cause acute kidney injury (AKI). It can be acquired or due to monogenic mutations. Around 60 different rare monogenic forms of rhabdomyolysis have been reported to date. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to nonspecific presentation, the high number of causative genes, and current lack of data on the prevalence of monogenic forms.MethodsWe employed whole exome sequencing (WES) to reveal the percentage of rhabdomyolysis cases explained by single-gene (monogenic) mutations in one of 58 candidate genes. We investigated a cohort of 21 unrelated families with rhabdomyolysis, in whom no underlying etiology had been previously established.ResultsUsing WES, we identified causative mutations in candidate genes in nine of the 21 families (43%). We detected disease-causing mutations in eight of 58 candidate genes, grouped into the following categories: (1) disorders of fatty acid metabolism (CPT2), (2) disorders of glycogen metabolism (PFKM and PGAM2), (3) disorders of abnormal skeletal muscle relaxation and contraction (CACNA1S, MYH3, RYR1 and SCN4A), and (4) disorders of purine metabolism (AHCY).ConclusionsOur findings demonstrate a very high detection rate for monogenic etiologies using WES and reveal broad genetic heterogeneity for rhabdomyolysis. These results highlight the importance of molecular genetic diagnostics for establishing an etiologic diagnosis. Because these patients are at risk for recurrent episodes of rhabdomyolysis and subsequent risk for AKI, WES allows adequate prophylaxis and treatment for these patients and their family members and enables a personalized medicine approach.


Journal of Clinical Investigation | 2017

Advillin acts upstream of phospholipase C ϵ1 in steroid-resistant nephrotic syndrome

Jia Rao; Shazia Ashraf; Weizhen Tan; Amelie T. van der Ven; Heon Yung Gee; Daniela A. Braun; Krisztina Fehér; Sudeep P. George; Amin Esmaeilniakooshkghazi; Won Il Choi; Tilman Jobst-Schwan; Ronen Schneider; Johanna Magdalena Schmidt; Eugen Widmeier; Jillian K. Warejko; Tobias Hermle; David Schapiro; Svjetlana Lovric; Shirlee Shril; Ankana Daga; Ahmet Nayir; Mohan Shenoy; Y Tse; Martin Bald; Udo Helmchen; Sevgi Mir; Afig Berdeli; Jameela A. Kari; Sherif El Desoky; Neveen A. Soliman

Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of chronic kidney disease. Here, we identified recessive mutations in the gene encoding the actin-binding protein advillin (AVIL) in 3 unrelated families with SRNS. While all AVIL mutations resulted in a marked loss of its actin-bundling ability, truncation of AVIL also disrupted colocalization with F-actin, thereby leading to impaired actin binding and severing. Additionally, AVIL colocalized and interacted with the phospholipase enzyme PLCE1 and with the ARP2/3 actin-modulating complex. Knockdown of AVIL in human podocytes reduced actin stress fibers at the cell periphery, prevented recruitment of PLCE1 to the ARP3-rich lamellipodia, blocked EGF-induced generation of diacylglycerol (DAG) by PLCE1, and attenuated the podocyte migration rate (PMR). These effects were reversed by overexpression of WT AVIL but not by overexpression of any of the 3 patient-derived AVIL mutants. The PMR was increased by overexpression of WT Avil or PLCE1, or by EGF stimulation; however, this increased PMR was ameliorated by inhibition of the ARP2/3 complex, indicating that ARP-dependent lamellipodia formation occurs downstream of AVIL and PLCE1 function. Together, these results delineate a comprehensive pathogenic axis of SRNS that integrates loss of AVIL function with alterations in the action of PLCE1, an established SRNS protein.


PLOS ONE | 2018

A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux

Amelie T. van der Ven; Birgit Kobbe; Stefan Kohl; Shirlee Shril; Hans-Martin Pogoda; Thomas Imhof; Hadas Ityel; Asaf Vivante; Jing Chen; Daw-Yang Hwang; Dervla M. Connaughton; Nina Mann; Eugen Widmeier; Mary Taglienti; Johanna Magdalena Schmidt; Makiko Nakayama; Prabha Senguttuvan; Selvin Kumar; Velibor Tasic; Elijah O. Kehinde; Shrikant Mane; Richard P. Lifton; Neveen A. Soliman; Weining Lu; Stuart B. Bauer; Matthias Hammerschmidt; Raimund Wagener; Friedhelm Hildebrandt

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40–50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.

Collaboration


Dive into the Amelie T. van der Ven's collaboration.

Top Co-Authors

Avatar

Shirlee Shril

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asaf Vivante

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eugen Widmeier

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jing Chen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ankana Daga

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Daniela A. Braun

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

David Schapiro

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hadas Ityel

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge