Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amer Sehic is active.

Publication


Featured researches published by Amer Sehic.


Physiological Genomics | 2011

Effects of in vivo transfection with anti-miR-214 on gene expression in murine molar tooth germ

Amer Sehic; Steinar Risnes; Cuong Khuu; Qalb-E-Saleem Khan; Harald Osmundsen

MicroRNAs (miRNAs) are an abundant class of noncoding RNAs that are believed to be important in many biological processes through regulation of gene expression. Little is known of their function in tooth morphogenesis and differentiation. MicroRNA-214 (miR-214), encoded by the polycistronic Dnm30os gene, is highly expressed during development of molar tooth germ and was selected as a target for silencing with anti-miR-214. Mandibular injection of 1-100 pmol of anti-miR-214 close to the developing first molar in newborn mice resulted in significant decrease in expression of miR-214, miR-466h, and miR-574-5p in the tooth germ. Furthermore, levels of miR-199a-3p, miR-199a-5p, miR-690, miR-720, and miR-1224 were significantly increased. Additionally, the expression of 863 genes was significantly increased and the expression of 305 genes was significantly decreased. Among the genes with increased expression was Twist-1 and Ezh2, suggested to regulate expression of miR-214. Microarray results were validated using real-time RT-PCR and Western blotting. Among genes with decreased expression were Amelx, Calb1, Enam, and Prnp; these changes also being reflected in levels of corresponding encoded proteins in the tooth germ. In the anti-miR-214-treated molars the enamel exhibited evidence of hypomineralization with remnants of organic material and reduced surface roughness after acid etching, possibly due to the transiently decreased expression of Amelx and Enam. In contrast, several genes encoding contractile proteins exhibited significantly increased expression. mRNAs involved in amelogenesis (Ambn, Amelx, Enam) were not found among targets of miRNAs that were differentially expressed following treatment with anti-miR-214. It is therefore suggested that effects of miR-214 on amelogenesis are indirect, perhaps mediated by the observed miR-214-dependent changes in levels of expression of numerous transcription factors.


European Journal of Oral Sciences | 2013

Expression of Clu and Tgfb1 during murine tooth development: effects of in-vivo transfection with anti-miR-214

Qalb-E-Saleem Khan; Amer Sehic; Cuong Khuu; Steinar Risnes; Harald Osmundsen

Expression of clusterin (Clu) in the murine first molar tooth germ was markedly increased at postnatal developmental stages. The time-course of expression of this gene paralleled those of other genes encoding proteins involved during the secretory phase of odontogenesis, as described previously. Immunohistochemical studies of clusterin in murine molar tooth germs suggested this protein to be located in outer enamel epithelium, regressing enamel organ, secretory ameloblasts, and the dental epithelium connecting the tooth to the oral epithelium at an early eruptive stage. Immunolabelling of transforming growth factor beta-1 (TGF-β1) revealed it to be located close to clusterin. The levels of expression of Clu and Tgfb1 were markedly decreased following in-vivo transfection with anti-miR-214. In contrast, the expression of several genes associated with regulation of growth and development were increased by this treatment. We suggest that clusterin has functions during secretory odontogenesis and the early eruptive phase. Bioinformatic analysis after treatment with anti-miR-214 suggested that, whilst cellular activities associated with tooth mineralization and eruption were inhibited, activities associated with an alternative developmental activity (i.e. biosynthesis of contractile proteins) appeared to be stimulated. These changes probably occur through regulation mediated by a common cluster of transcription factors and support suggestions that microRNAs (miRNAs) are highly significant as regulators of differentiation during odontogenesis.


Scientifica | 2016

The Three Paralogous MicroRNA Clusters in Development and Disease, miR-17-92, miR-106a-363, and miR-106b-25.

Cuong Khuu; Tor Paaske Utheim; Amer Sehic

MicroRNAs (miRNAs) form a class of noncoding RNA genes whose products are small single-stranded RNAs that are involved in the regulation of translation and degradation of mRNAs. There is a fine balance between deregulation of normal developmental programs and tumor genesis. An increasing body of evidence suggests that altered expression of miRNAs is entailed in the pathogenesis of human cancers. Studies in mouse and human cells have identified the miR-17-92 cluster as a potential oncogene. The miR-17-92 cluster is often amplified or overexpressed in human cancers and has recently emerged as the prototypical oncogenic polycistron miRNA. The functional analysis of miR-17-92 is intricate by the existence of two paralogues: miR-106a-363 and miR-106b-25. During early evolution of vertebrates, it is likely that the three clusters commenced via a series of duplication and deletion occurrences. As miR-106a-363 and miR-106b-25 contain miRNAs that are very similar, and in some cases identical, to those encoded by miR-17-92, it is feasible that they regulate a similar set of genes and have overlapping functions. Further understanding of these three clusters and their functions will increase our knowledge about cancer progression. The present review discusses the characteristics and functions of these three miRNA clusters.


European Journal of Oral Sciences | 2009

Distribution and structure of the initial dental enamel formed in incisors of young wild-type and Tabby mice

Amer Sehic; Renata Peterkova; Hervé Lesot; Steinar Risnes

Mouse incisor enamel can be divided into four layers: an inner prism-free layer; an inner enamel with prism decussation; outer enamel with parallel prisms; and a superficial prism-free layer. We wanted to study how this complex structural organization is established in the very first enamel formed in wild-type mice and also in Tabby mice where enamel coverage varies considerably. Unworn incisors from young female wild-type and Tabby mice were ground, etched, and analyzed using scanning electron microscopy. In both wild-type and Tabby mice, establishment of the enamel structural characteristics in the initially formed enamel proceeded as follows, going from the incisal tip in an apical direction: (i) a zone with prism-free enamel, (ii) a zone with occasional prisms most often inclined incisally, and (iii) a zone where prism decussation was gradually established in the inner enamel. The distribution of enamel in Tabby mice exhibited considerable variability. The sequence of initial enamel formation in mouse incisors mimics development from a primitive (prism-free) structure to an evolved structure. It is suggested that genes controlling enamel distribution are not associated with genes controlling enamel structure. The control of ameloblast configuration, life span, organization in transverse rows, and movement is important for establishing the characteristic mature pattern of mouse incisor enamel.


European Journal of Oral Sciences | 2009

Differential gene expression profiling of the molar tooth germ in peroxisome proliferator-activated receptor-α (PPAR-α) knockout mouse and in wild-type mouse: molar tooth phenotype of PPAR-α knockout mouse

Amer Sehic; Cuong Khuu; Steinar Risnes; Harald Osmundsen

Gene expression profiling of the first molar tooth germ at embryonic days (E)17.5 and 18.5, and at postnatal days (P)0, 2, and 6 from peroxisome proliferator-activated receptor-alpha (PPAR-alpha) knockout mouse and from wild-type mouse was carried out using microarrays and validated using real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. When comparing expression profiles at each time-point, a total of 1,235 genes showed significantly different expression, 772 of which exhibited significantly decreased expression in tooth germ from knockout mouse. With genes exhibiting significantly decreased levels of expression in tooth germ from PPAR-alpha knockout mouse, bioinformatic analysis using ingenuity pathway analysis yielded significant associations to cellular functions related to cellular growth/proliferation and to networks related to regulation of calcium homeostasis. Using scanning electron microscopy to investigate molars from adult PPAR-alpha knockout mouse, the molar size was found to be slightly reduced, the enamel structure was found to be normal, but cervical molar enamel exhibited evidence suggesting hypomineralization. Although the PPAR-alpha knockout had no significant effect on molar morphology, the results suggest that active PPAR-alpha signaling is required to achieve normal mineralization of molar enamel, most probably through regulation of calcium homeostasis and metabolism of vitamin D. Cyp27b1 was expressed in tooth germ, suggesting that tooth germ can synthesize active vitamin D. Expression of Cyp27b1 was significantly enhanced in postnatal PPAR-alpha knockout tooth germ.


Journal of Functional Biomaterials | 2015

Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency.

Amer Sehic; Øygunn Aass Utheim; Kristoffer Ommundsen; Tor Paaske Utheim

The cornea is essential for normal vision by maintaining transparency for light transmission. Limbal stem cells, which reside in the corneal periphery, contribute to the homeostasis of the corneal epithelium. Any damage or disease affecting the function of these cells may result in limbal stem cell deficiency (LSCD). The condition may result in both severe pain and blindness. Transplantation of ex vivo cultured cells onto the cornea is most often an effective therapeutic strategy for LSCD. The use of ex vivo cultured limbal epithelial cells (LEC), oral mucosal epithelial cells, and conjunctival epithelial cells to treat LSCD has been explored in humans. The present review focuses on the current state of knowledge of the many other cell-based therapies of LSCD that have so far exclusively been explored in animal models as there is currently no consensus on the best cell type for treating LSCD. Major findings of all these studies with special emphasis on substrates for culture and transplantation are systematically presented and discussed. Among the many potential cell types that still have not been used clinically, we conclude that two easily accessible autologous sources, epidermal stem cells and hair follicle-derived stem cells, are particularly strong candidates for future clinical trials.


American Journal of Pathology | 2016

Electrical Stimulation as a Means for Improving Vision.

Amer Sehic; Shuai Guo; Kin-Sang Cho; Rima Maria Corraya; Dong Feng Chen; Tor Paaske Utheim

Evolving research has provided evidence that noninvasive electrical stimulation (ES) of the eye may be a promising therapy for either preserving or restoring vision in several retinal and optic nerve diseases. In this review, we focus on minimally invasive strategies for the delivery of ES and accordingly summarize the current literature on transcorneal, transorbital, and transpalpebral ES in both animal experiments and clinical studies. Various mechanisms are believed to underlie the effects of ES, including increased production of neurotrophic agents, improved chorioretinal blood circulation, and inhibition of proinflammatory cytokines. Different animal models have demonstrated favorable effects of ES on both the retina and the optic nerve. Promising effects of ES have also been demonstrated in clinical studies; however, all current studies have a lack of randomization and/or a control group (sham). There is thus a pressing need for a deeper understanding of the underlying mechanisms that govern clinical success and optimization of stimulation parameters in animal studies. In addition, such research should be followed by large, prospective, clinical studies to explore the full potential of ES. Through this review, we aim to provide insight to guide future research on ES as a potential therapy for improving vision.


Gene | 2017

Regulatory roles of microRNAs in human dental tissues

Amer Sehic; Amela Tulek; Cuong Khuu; Minou Nirvani; Lars Peter Sand; Tor Paaske Utheim

MicroRNAs (miRNAs) are a class of small, non-coding RNAs that provide an efficient pathway for regulation of gene expression at a post-transcriptional level. Tooth development is regulated by a complex network of cell-cell signaling during all steps of organogenesis. Most of the congenital dental defects in humans are caused by mutations in genes involved in developmental regulatory networks. Whereas the developmental morphological stages of the tooth development already are thoroughly documented, the implicated genetic network is still under investigation. The involvement of miRNAs in the regulation of tooth genetic network was suggested for the first time in 2008. MiRNAs regulate tooth morphogenesis by fine-tuning the signaling networks. Unique groups of miRNAs are expressed in dental epithelium compared with mesenchyme, as well as in molars compared with incisors. The present review focuses on the current state of knowledge on the expression and function of miRNAs in human dental tissues, including teeth and the surrounding structures. Herein, we show that miRNAs exhibit specific roles in human dental tissues and are involved in gingival and periodontal disease, tooth movement and eruption, dental pulp physiology including repair and regeneration, differentiation of dental cells, and enamel mineralization. In light of similarities between the tooth development and other organs originating from the epithelium, further understanding of miRNAs` function in dental tissues may have wide biological relevance.


European Journal of Oral Sciences | 2012

Expression of delta-like 1 homologue and insulin-like growth factor 2 through epigenetic regulation of the genes during development of mouse molar

Qalb-E-Saleem Khan; Amer Sehic; Natalie Skalleberg; Maria A. Landin; Cuong Khuu; Steinar Risnes; Harald Osmundsen

Delta-like 1 homolog (Dlk1) and insulin-like growth factor 2 (Igf2) are two of six well-studied mouse imprinted gene clusters that are paternally expressed. Their expression is also linked to their maternally expressed non-coding RNAs, encoded by Gene trap locus 2 (Gtl2) and Imprinted maternally expressed transcript (H19), co-located as imprinted gene clusters. Using deoxyoligonucleotide microarrays and real-time RT-PCR analysis we showed Dlk1 and Gtl2 to exhibit a time-course of expression during tooth development that was similar to that of Igf2 and H19. Western blot analysis of proteins encoded by Dlk1 and Igf2 suggested that the levels of these proteins reflected those of the corresponding mRNAs. Immunohistochemical studies of DLK1 in murine molars detected the protein in both epithelial and mesenchymal regions, in developing cusp mesenchyme, and in newly synthesized enamel and dentin tubules. IGF2 protein was detected primarily at prenatal stages, suggesting that it may be active before birth. Analysis of methylation of cytosine-phosphate-guanine (CpG) islands in both Dlk1 and Igf2 suggested the presence of an increasing fraction of hypermethylated bases with increasing time of development. The increased levels of hypermethylation coincided both with the diminished levels of expression of Dlk1 and Igf2 and with decreased levels of DLK1 and IGF2 proteins in the tooth germ, suggesting that their expression is regulated via methylation of CpG islands present in these genes.


Archives of Oral Biology | 2013

Incremental lines in mouse molar enamel.

Amer Sehic; Minou Nirvani; Steinar Risnes

OBJECTIVE The purpose of the present study was to investigate the occurrence and periodicity of enamel incremental lines in mouse molars in an attempt to draw attention to some key questions about the rhythm in the activity of the secreting ameloblasts during formation of mouse molar enamel. METHODS The mouse molars were ground, etched, and studied using scanning electron microscopy. RESULTS Lines interpreted as incremental lines generally appeared as grooves of variable distinctness, and were only observed cervically, in the region about 50-250μm from the enamel-cementum junction. The lines were most readily observable in the outer enamel and in the superficial prism-free layer, and were difficult to identify in the deeper parts of enamel, i.e. in the inner enamel with prism decussation. However, in areas where the enamel tended to be hypomineralized the incremental lines were observed as clearly continuous from outer into inner enamel. The incremental lines in mouse molar enamel exhibited an average periodicity of about 4μm, and the distance between the lines decreased towards the enamel surface. CONCLUSIONS We conclude that incremental lines are to some extent visible in mouse molar enamel. Together with data from the literature and theoretical considerations, we suggest that they probably represent a daily rhythm in enamel formation. This study witnesses the layered apposition of mouse molar enamel and supports the theory that circadian clock probably regulates enamel development.

Collaboration


Dive into the Amer Sehic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge