Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ames Herbert is active.

Publication


Featured researches published by Ames Herbert.


Journal of Integrated Pest Management | 2014

Biology, Ecology, and Management of Brown Marmorated Stink Bug (Hemiptera: Pentatomidae)

Kevin B. Rice; Chris J. Bergh; Erik J. Bergmann; D. J. Biddinger; Christine Dieckhoff; Galen P. Dively; Hannah Fraser; Tara D. Gariepy; George C. Hamilton; Tim Haye; Ames Herbert; Kim A. Hoelmer; Cerruti R. R. Hooks; Ashley S. Jones; Greg Krawczyk; Thomas P. Kuhar; Holly M. Martinson; William Mitchell; Anne L. Nielsen; Doug G. Pfeiffer; Michael J. Raupp; Cesar Rodriguez-Saona; Peter W. Shearer; Paula M. Shrewsbury; P. Dilip Venugopal; Joanne Whalen; Nik G. Wiman; Tracy C. Leskey; John F. Tooker

Brown marmorated stink bug, Halyomorpha halys Stal, is an invasive, herbivorous insect species that was accidentally introduced to the United States from Asia. First discovered in Allentown, PA, in 1996, H. halys has now been reported from at least 40 states in the United States. Additional invasions have been detected in Canada, Switzerland, France, Germany, Italy, and Lichtenstein, suggesting this invasive species could emerge as a cosmopolitan pest species. In its native range, H. halys is classified as an outbreak pest; however, in North America, H. halys has become a major agricultural pest across a wide range of commodities. H. halys is a generalist herbivore, capable of consuming >100 different species of host plants, often resulting in substantial economic damage; its feeding damage resulted in US


Journal of Integrated Pest Management | 2011

Biology, Crop Injury, and Management of Thrips (Thysanoptera: Thripidae) Infesting Cotton Seedlings in the United States

Don Lloyd Cook; Ames Herbert; D. Scott Akin; Jack T. Reed

37 million of losses in apple in 2010, but this stink bug species also attacks other fruit, vegetable, field crop, and ornamental plant species. H. halys has disrupted integrated pest management programs for multiple cropping systems. Pesticide applications, including broad-spectrum insecticides, have increased in response to H. halys infestations, potentially negatively influencing populations of beneficial arthropods and increasing secondary pest outbreaks. H. halys is also challenging because it affects homeowners as a nuisance pest; the bug tends to overwinter in homes and outbuildings. Although more research is required to better understand the ecology and biology of H. halys , we present its life history, host plant damage, and the management options available for this invasive pest species.


Pest Management Science | 2016

Frankliniella fusca resistance to neonicotinoid insecticides: an emerging challenge for cotton pest management in the eastern United States

Anders S. Huseth; Thomas M. Chappell; Kevin Langdon; Shannon C. Morsello; Scott Martin; Jeremy K. Greene; Ames Herbert; Alana L. Jacobson; Francis P. F. Reay-Jones; Timothy Reed; Dominic D. Reisig; Phillip M. Roberts; Ronald H. Smith; George G. Kennedy

Several species of thrips are known to infest cotton seedlings in the United States and constitute one of the most common insect pest challenges for growers. The species complex, species abundance, extent of crop injury, and impact on lint yield varies widely across the cotton states. Cotton seedlings are most susceptible to thrips injury during the first 4 to 5 weeks after plant emergence. Feeding by thrips results in distortion, malformation and tearing of seedling leaves, reduced leaf area and plant height, reduced root growth, and injury to or death of the apical meristem, the latter of which leads to excessive vegetative branching. Plant maturity (i.e., fruit production) can be delayed and in extreme cases, losses of as much a 30-50% of lint yield potential have been reported. To date, no varieties of cotton have resistance to thrips, so controls are based solely on insecticide applications. Treatment thresholds and control practices (e.g., insecticide seed treatments, in-furrow or foliar applied insecticides) vary widely across cotton states. This article provides a brief summary of the various species of thrips present in U.S. cotton, their plant host range and injury to cotton, a general description of thrips biology, and management practices currently available to growers.


International Journal of Molecular Sciences | 2016

Biology, Pest Status, Microbiome and Control of Kudzu Bug (Hemiptera: Heteroptera: Plataspidae): A New Invasive Pest in the U.S.

Anirudh Dhammi; Jaap B. van Krestchmar; Loganathan Ponnusamy; Jack S. Bacheler; Dominic D. Reisig; Ames Herbert; Alejandro I. Del Pozo-Valdivia; R. Michael Roe

BACKGROUND Over the past two decades, neonicotinoid seed treatments have become the primary method to manage tobacco thrips, Frankliniella fusca Hinds, on seedling cotton. Because this insect is highly polyphagous and the window of insecticide exposure is short, neonicotinoid resistance was expected to pose a minimal risk. However, reports of higher than expected F. fusca seedling damage in seed-treated cotton fields throughout the Mid-South and Southeast US production regions suggested neonicotinoid resistance had developed. To document this change, F. fusca populations from 86 different locations in the eastern United States were assayed in 2014 and 2015 for imidacloprid and thiamethoxam resistance to determine the extent of the issue in the region. RESULTS Approximately 57 and 65% of the F. fusca populations surveyed had reduced imidacloprid and thiamethoxam sensitivity respectively. Survivorship in diagnostic bioassays was significantly different at both the state and regional scales. Multiple-dose bioassays conducted on 37 of the populations documented up to 55- and 39-fold resistance ratios for imidacloprid and thiamethoxam respectively. CONCLUSION Estimates of neonicotinoid resistance indicate an emerging issue for management of F. fusca in the eastern United States. Significant variation in survivorship within states and regions indicated that finer-scale surveys were needed to determine factors (genetic, insecticide use) driving resistance evolution.


Journal of Economic Entomology | 2010

Relationship between external stink bug (Hemiptera: Pentatomidae) boll-feeding symptoms and internal boll damage with respect to cotton lint gin-out and fiber quality.

Eric Blinka; Ames Herbert; S. Malone; John W. Van Duyn; Phillip M. Roberts; J. R. Bradley; Jack S. Bacheler

Soybean is an important food crop, and insect integrated pest management (IPM) is critical to the sustainability of this production system. In recent years, the introduction into the United States of the kudzu bug currently identified as Megacopta cribraria (F.), poses a threat to soybean production. The kudzu bug was first discovered in the state of Georgia, U.S. in 2009 and since then has spread to most of the southeastern states. Because it was not found in the North American subcontinent before this time, much of our knowledge of this insect comes from research done in its native habitat. However, since the U.S. introduction, studies have been undertaken to improve our understanding of the kudzu bug basic biology, microbiome, migration patterns, host selection and management in its expanding new range. Researchers are not only looking at developing IPM strategies for the kudzu bug in soybean, but also at its unique relationship with symbiotic bacteria. Adult females deposit bacterial packets with their eggs, and the neonates feed on these packets to acquire the bacteria, Candidatus Ishikawaella capsulata. The kudzu bug should be an informative model to study the co-evolution of insect function and behavior with that of a single bacteria species. We review kudzu bug trapping and survey methods, the development of bioassays for insecticide susceptibility, insecticide efficacy, host preferences, impact of the pest on urban environments, population expansion, and the occurrence of natural enemies. The identity of the kudzu bug in the U.S. is not clear. We propose that the kudzu bug currently accepted as M. cribraria in the U.S. is actually Megacopta punctatissima, with more work needed to confirm this hypothesis.


PLOS ONE | 2016

Contrasting Role of Temperature in Structuring Regional Patterns of Invasive and Native Pestilential Stink Bugs.

P. Dilip Venugopal; Galen P. Dively; Ames Herbert; S. Malone; Joanne Whalen; William O. Lamp

ABSTRACT Cotton, Gossypium hirsutum L., bolls from 17 field locations in northeastern North Carolina and southeastern Virginia, having 20% or greater internal boll damage, were studied to determine the relationship between external feeding symptoms and internal damage caused by stink bug (Hemiptera: Pentatomidae) feeding. In 2006 and 2007, two cohorts of 100 bolls each were sampled at all field locations. The first cohort was removed as bolls reached approximately quarter size in diameter (2.4 cm). External and internal symptoms of stink bug feeding were assessed and tabulated. Concurrent to when the first cohort was collected, a second cohort of quarter-size-diameter bolls was identified, tagged, examined in situ for external feeding symptoms (sunken lesions), and harvested at the black seed coat stage. Harvested bolls were assessed for internal damage and locks were categorized (undamaged, minor damage, or major damage), dried, and ginned. Lint samples from each damage category were submitted for high volume instrument and advanced fiber information system quality analyses. Significant, moderately strong Pearson correlation coefficients existed between number of external stink bug feeding lesions and internal damage. Pearson correlation of total external lesions with total internal damage was stronger than any correlation among the other single components compared. Predictability plots indicated a rapid increase in relationship strength when relating external stink bug lesions to internal damage as the number of external lesions increased. Approximately 90% predictability of internal damage was achieved with four (2006) or six (2007) external lesions per boll. Gin-turnout and fiber quality decreased with increasing intensity of internal stink bug damage.


Archive | 2004

BACILLUS THURINGIENSIS CRY1AC RESISTANCE MONITORING PROGRAM FOR TOBACCO BUDWORM AND BOLLWORM IN 2004

Carlos A. Blanco; Larry Adams; Jeff Gore; D. D. Hardee; J. R. Bradley; John W. Van Duyn; Jeremy K. Greene; Donald R. Johnson; Randall Luttrell; Glenn E. Studebaker; Ames Herbert; Brad Lewis; Juan D. López

Objectives Assessment and identification of spatial structures in the distribution and abundance of invasive species is important for unraveling the underlying ecological processes. The invasive agricultural insect pest Halyomorpha halys that causes severe economic losses in the United States is currently expanding both within United States and across Europe. We examined the drivers of H. halys invasion by characterizing the distribution and abundance patterns of H. halys and native stink bugs (Chinavia hilaris and Euschistus servus) across eight different spatial scales. We then quantified the interactive and individual influences of temperature, and measures of resource availability and distance from source populations, and their relevant spatial scales. We used Moran’s Eigenvector Maps based on Gabriel graph framework to quantify spatial relationships among the soybean fields in mid-Atlantic Unites States surveyed for stink bugs. Findings Results from the multi-spatial scale, multivariate analyses showed that temperature and its interaction with resource availability and distance from source populations structures the patterns in H. halys at very broad spatial scale. H. halys abundance decreased with increasing average June temperature and distance from source population. H. halys were not recorded at fields with average June temperature higher than 23.5°C. In parts with suitable climate, high H. halys abundance was positively associated with percentage developed open area and percentage deciduous forests at 250m scale. Broad scale patterns in native stink bugs were positively associated with increasing forest cover and, in contrast to the invasive H. halys, increasing mean July temperature. Our results identify the contrasting role of temperature in structuring regional patterns in H. halys and native stink bugs, while demonstrating its interaction with resource availability and distance from source populations for structuring H. halys patterns. Conclusion These results help predicting the pest potential of H. halys and vulnerability of agricultural systems at various regions, given the climatic conditions, and its interaction with resource availability and distance from source populations. Monitoring and control efforts within parts of the United States and Europe with more suitable climate could focus in areas of peri-urban developments with deciduous forests and other host plants, along with efforts to reduce propagule pressure.


Plant Health Progress | 2007

Helicoverpa zea Trends from the Northeast: Suggestions Towards Collaborative Mapping of Migration and Pyrethroid Susceptibility

Shelby J. Fleischer; Greg Payne; Thomas P. Kuhar; Ames Herbert; S. Malone; Joanne Whalen; Galen P. Dively; David H. Johnson; Jo Anna Hebberger; Joe Ingerson-Mahar; Kristian Holmstrom; Doug Miller


Archive | 2015

Brown marmorated stink bug - Biology and management in mid-Atlantic soybeans

William Cissel; Joanne Whalen; P. Dilip Venugopal; Galen P. Dively; Terry W. Patton; Cerruti R. R. Hooks; Ben Aigner; Jamie Hogue; Ames Herbert; Thomas P. Kuhar; S. Malone; Ed Seymore


Crop, Forage and Turfgrass Management | 2016

Peanut Production in Virginia and the Carolinas: Development of a Website and Program Editor

Bridget R. Lassiter; Gail G. Wilkerson; Gregory S. Buol; David L. Jordan; Barbara B. Shew; Rick L. Brandenburg; Ames Herbert; Patrick M. Phipps; Jay W. Chapin

Collaboration


Dive into the Ames Herbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. R. Bradley

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jack S. Bacheler

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Van Duyn

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara B. Shew

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Bridget R. Lassiter

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge