Amic Frouvelle
CEREMADE
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amic Frouvelle.
Kinetic and Related Models | 2011
Marion Acheritogaray; Pierre Degond; Amic Frouvelle; Jian-Guo Liu
This paper deals with the derivation and analysis of the the Hall Magneto-Hydrodynamic equations. We first provide a derivation of this system from a two-fluids Euler-Maxwell system for electrons and ions, through a set of scaling limits. We also propose a kinetic formulation for the Hall-MHD equations which contains as fluid closure different variants of the Hall-MHD model. Then, we prove the existence of global weak solutions for the incompressible viscous resistive Hall-MHD model. We use the particular structure of the Hall term which has zero contribution to the energy identity. Finally, we discuss particular solutions in the form of axisymmetric purely swirling magnetic fields and propose some regularization of the Hall equation.
Journal of Nonlinear Science | 2013
Pierre Degond; Amic Frouvelle; Jian-Guo Liu
We investigate systems of self-propelled particles with alignment interaction. Compared to previous work (Degond and Motsch, Math. Models Methods Appl. Sci. 18:1193–1215, 2008a; Frouvelle, Math. Models Methods Appl. Sci., 2012), the force acting on the particles is not normalized, and this modification gives rise to phase transitions from disordered states at low density to aligned states at high densities. This model is the space-inhomogeneous extension of (Frouvelle and Liu, Dynamics in a kinetic model of oriented particles with phase transition, 2012), in which the existence and stability of the equilibrium states were investigated. When the density is lower than a threshold value, the dynamics is described by a nonlinear diffusion equation. By contrast, when the density is larger than this threshold value, the dynamics is described by a similar hydrodynamic model for self-alignment interactions as derived in (Degond and Motsch, Math. Models Methods Appl. Sci. 18:1193–1215, 2008a; Frouvelle, Math. Models Methods Appl. Sci., 2012). However, the modified normalization of the force gives rise to different convection speeds, and the resulting model may lose its hyperbolicity in some regions of the state space.
Siam Journal on Mathematical Analysis | 2012
Amic Frouvelle; Jian-Guo Liu
Motivated by a phenomenon of phase transition in a model of alignment of self-propelled particles, we obtain a kinetic mean-field equation which is nothing else than the Doi equation (also called Smoluchowski equation) with dipolar potential. In a self-contained article, using only basic tools, we analyze the dynamics of this equation in any dimension. We first prove global well-posedness of this equation, starting with an initial condition in any Sobolev space. We then compute all possible steady-states. There is a threshold for the noise parameter: over this threshold, the only equilibrium is the uniform distribution, and under this threshold, there is also a family of non-isotropic equilibria. We give a rigorous prove of convergence of the solution to a steady-state as time goes to infinity. In particular we show that in the supercritical case, the only initial conditions leading to the uniform distribution in large time are those with vanishing momentum. For any positive value of the noise parameter, and any initial condition, we give rates of convergence towards equilibrium, exponentially for both supercritical and subcritical cases and algebraically for the critical case.
Mathematical Models and Methods in Applied Sciences | 2012
Amic Frouvelle
We consider the macroscopic model derived by Degond and Motsch from a time-continuous version of the Vicsek model, describing the interaction orientation in a large number of self-propelled particles. In this paper, we study the influence of a slight modification at the individual level, letting the relaxation parameter depend on the local density and taking in account some anisotropy in the observation kernel (which can model an angle of vision). The main result is a certain robustness of this macroscopic limit and of the methodology used to derive it. With some adaptations to the concept of generalized collisional invariants, we are able to derive the same system of partial differential equations, the only difference being in the definition of the coefficients, which depend on the density. This new feature may lead to the loss of hyperbolicity in some regimes. We then provide a general method which enables us to get asymptotic expansions of these coefficients. These expansions shows, in some effective situations, that the system is not hyperbolic. This asymptotic study is also useful to measure the influence of the angle of vision in the final macroscopic model, when the noise is small.
Archive for Rational Mechanics and Analysis | 2015
Pierre Degond; Amic Frouvelle; Jian-Guo Liu
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
Mathematical Models and Methods in Applied Sciences | 2017
Pierre Degond; Amic Frouvelle; Sara Merino-Aceituno
We present a new model for multi-agent dynamics where each agent is described by its position and body attitude: agents travel at a constant speed in a given direction and their body can rotate around it adopting different configurations. In this manner, the body attitude is described by three orthonormal axes giving an element in
Journal of Statistical Physics | 2014
Pierre Degond; Amic Frouvelle; Gaël Raoul
SO(3)
Multiscale Modeling & Simulation | 2018
Pierre Degond; Amic Frouvelle; Sara Merino-Aceituno; Ariane Trescases
(rotation matrix). Agents try to coordinate their body attitudes with the ones of their neighbours. In the present paper, we give the Individual Based Model (particle model) for this dynamics and derive its corresponding kinetic and macroscopic equations.
arXiv: Mathematical Physics | 2012
Pierre Degond; Amic Frouvelle; Jian-Guo Liu; Sébastien Motsch; Laurent Navoret
We prove the nonlinear local stability of Dirac masses for a kinetic model of alignment of particles on the unit sphere, each point of the unit sphere representing a direction. A population concentrated in a Dirac mass then corresponds to the global alignment of all individuals. The main difficulty of this model is the lack of conserved quantities and the absence of an energy that would decrease for any initial condition. We overcome this difficulty thanks to a functional which is decreasing in time in a neighborhood of any Dirac mass (in the sense of the Wasserstein distance). The results are then extended to the case where the unit sphere is replaced by a general Riemannian manifold.
arXiv: Mathematical Physics | 2012
Pierre Degond; Amic Frouvelle; Jian-Guo Liu
We introduce a model of multiagent dynamics for self-organized motion; individuals travel at a constant speed while trying to adopt the averaged body attitude of their neighbors. The body attitudes are represented through unitary quaternions. We prove the correspondence with the model presented in [P. Degond, A. Frouvelle, and S. Merino-Aceituno, Math. Models Methods Appl. Sci., 27 (2017), pp. 1005--1049], where the body attitudes are represented by rotation matrices. Differently from this previous work, the individual-based model introduced here is based on nematic (rather than polar) alignment. From the individual-based model, the kinetic and macroscopic equations are derived. The benefit of this approach, in contrast to that of the previous one, is twofold: first, it allows for a better understanding of the macroscopic equations obtained and, second, these equations are prone to numerical studies, which is key for applications.