Amin Boroujerdi
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amin Boroujerdi.
Microvascular Research | 2012
Ulrich Tigges; Jennifer V. Welser-Alves; Amin Boroujerdi; Richard Milner
Pericytes play critical roles in the development, maturation and remodeling of blood vessels, and in the central nervous system (CNS), evidence suggests that pericytes also regulate blood flow and form an integral part of the blood-brain barrier. The study of this important cell type has been hampered by the lack of any pericyte-specific marker and by the difficulty of culturing pericytes in adequate numbers to high purity. Here we present a novel yet simple approach to isolate and culture large numbers of pericytes from the mouse CNS that nevertheless leads to very pure pericyte cultures. In our method, vascular cells obtained from adult mice brains are cultured initially under conditions optimized for endothelial cells, but after two passages switched to a medium optimized for pericyte growth. After growing the cells for 1-2 additional passages we obtained a largely homogeneous population of cells that expressed the pericyte markers NG2, PDGFβ-receptor, and CD146, but were negative for markers of endothelial cells (CD31), microglia (Mac-1) and astrocytes (GFAP). Under these conditions, pericytes could be grown to high passage number, and were maintained highly pure and largely undifferentiated, as determined by antigen expression profile and low levels of α-SMA expression, a marker of pericyte differentiation. Furthermore, switching the cells from pericyte medium into DMEM containing 10% FBS promoted α-SMA expression, demonstrating that high passage pericytes could still differentiate. Thus, we provide an alternative approach to the culture of CNS pericytes that is easy to establish and provides large numbers of highly pure pericytes for extended periods of time. This system should provide others working in the pericyte field with a useful additional tool to study the behavior of this fascinating cell type.
Experimental Neurology | 2012
Longxuan Li; Jennifer V. Welser-Alves; Arjan van der Flier; Amin Boroujerdi; Richard O. Hynes; Richard Milner
Fibronectin is a critical regulator of vascular modelling, both in development and in the adult. In the hypoxic adult central nervous system (CNS), fibronectin is induced on angiogenic vessels, and endothelial cells show strong induction of the two fibronectin receptors α5β1 and αvβ3 integrins. In a previous study, we found that the αvβ3 integrin is dispensable for hypoxic-induced cerebral angiogenesis, but a role for the endothelial α5β1 integrin was suggested. To directly investigate the role of endothelial α5 integrin in cerebral angiogenesis, wild-type mice and mice lacking α5 integrin expression in endothelial cells (α5-EC-KO) were subject to hypoxia (8% O(2)) for 0, 2, 4, 7 or 14 days. Quantification of cerebral vessel density and endothelial-specific proteins claudin-5 and Glut-1 revealed that α5-EC-KO mice displayed an attenuated angiogenic response, which correlated with delayed endothelial proliferation. α5-EC-KO mice showed no defect in the ability to organize a cerebrovascular fibronectin matrix, and no compensatory increase in vascular αvβ3 integrin expression. Consistent with these findings, primary α5KO brain endothelial cells (BEC) in culture exhibited delayed growth and proliferation. Taken together, these studies demonstrate an important angiogenic role for the α5β1 integrin in promoting BEC proliferation in response to cerebral hypoxia.
Journal of Cerebral Blood Flow and Metabolism | 2012
Amin Boroujerdi; Jennifer V. Welser-Alves; Ulrich Tigges; Richard Milner
Chronic cerebral hypoxia leads to a strong vascular remodeling response, though little is known about which part of the vascular tree is modified, or whether this response includes formation of new arterial vessels. In this study, we examined this process in detail, analyzing how hypoxia (8% O2 for 14 days) alters the size distribution of vessels, number of arteries/arterioles, and expression pattern of endoglin (CD105), a marker of angiogenic endothelial cells in tumors. We found that cerebral hypoxia promoted the biggest increase in the number of medium to large size vessels, and this correlated with increased numbers of alpha smooth muscle actin (α-SMA)-positive arterial vessels. Surprisingly, hypoxia induced a marked reduction in CD105 expression on brain endothelial cells (BECs) within remodeling arterial vessels, and these BECs also displayed an angiogenic switch in β1 integrins (from α6 to α5), previously described for developmental angiogenesis. In vitro, transforming growth factor (TGF)-β1 also promoted this switch of BEC β1 integrins. Together, these results show that cerebral hypoxia promotes arteriogenesis, and identify reduced CD105 expression as a novel marker of arteriogenesis. Furthermore, our data suggest a mechanistic model whereby BECs in remodeling arterial vessels downregulate CD105 expression, which alters TGF-β1 signaling, to promote a switch in β1 integrins and arteriogenic remodeling.
Journal of Neuroinflammation | 2013
Ulrich Tigges; Amin Boroujerdi; Jennifer V. Welser-Alves; Richard Milner
BackgroundThere is increasing evidence to suggest that pericytes play a crucial role in regulating the remodeling state of blood vessels. As cerebral pericytes are embedded within the extracellular matrix (ECM) of the vascular basal lamina, it is important to understand how individual ECM components influence pericyte remodeling behavior, and how cytokines regulate these events.MethodsThe influence of different vascular ECM substrates on cerebral pericyte behavior was examined in assays of cell adhesion, migration, and proliferation. Pericyte expression of integrin receptors was examined by flow cytometry. The influence of cytokines on pericyte functions and integrin expression was also examined, and the role of specific integrins in mediating these effects was defined by function-blocking antibodies. Expression of pericyte integrins within remodeling cerebral blood vessels was analyzed using dual immunofluorescence (IF) of brain sections derived from the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE).ResultsFibronectin and collagen I promoted pericyte proliferation and migration, but heparan sulfate proteoglycan (HSPG) had an inhibitory influence on pericyte behavior. Flow cytometry showed that cerebral pericytes express high levels of α5 integrin, and lower levels of α1, α2, and α6 integrins. The pro-inflammatory cytokine tumor necrosis factor (TNF)-α strongly promoted pericyte proliferation and migration, and concomitantly induced a switch in pericyte integrins, from α1 to α2 integrin, the opposite to the switch seen when pericytes differentiated. Inhibition studies showed that α2 integrin mediates pericyte adhesion to collagens, and significantly, function blockade of α2 integrin abrogated the pro-modeling influence of TNF-α. Dual-IF on brain tissue with the pericyte marker NG2 showed that while α1 integrin was expressed by pericytes in both stable and remodeling vessels, pericyte expression of α2 integrin was strongly induced in remodeling vessels in EAE brain.ConclusionsOur results suggest a model in which ECM constituents exert an important influence on pericyte remodeling status. In this model, HSPG restricts pericyte remodeling in stable vessels, but during inflammation, TNF-α triggers a switch in pericyte integrins from α1 to α2, thereby stimulating pericyte proliferation and migration on collagen. These results thus define a fundamental molecular mechanism in which TNF-α stimulates pericyte remodeling in an α2 integrin-dependent manner.
Experimental Neurology | 2013
Amin Boroujerdi; Jennifer V. Welser-Alves; Richard Milner
Alterations in vascular structure and function are a central component of demyelinating disease. In addition to blood-brain barrier (BBB) breakdown, which occurs early in the course of disease, recent studies have described angiogenic remodeling, both in multiple sclerosis tissue and in the mouse demyelinating model, experimental autoimmune encephalomyelitis (EAE). As the precise timing of vascular remodeling in demyelinating disease has yet to be fully defined, the purpose of the current study was to define the time-course of these events in the MOG35-55 EAE model. Quantification of endothelial cell proliferation and vessel density revealed that a large part of angiogenic remodeling in cervical spinal cord white matter occurs during the pre-symptomatic phase of EAE. At the height of vascular remodeling, blood vessels in the cervical spinal cord showed strong transient upregulation of fibronectin and the α5β1 integrin. In vitro experiments revealed that α5 integrin inhibition reduced brain endothelial cell proliferation under inflammatory conditions. Interestingly, loss of vascular integrity was evident in all vessels during the first 4-7days post-immunization, but after 14days, was localized predominantly to venules. Taken together, our data demonstrate that extensive vascular remodeling occurs during the pre-symptomatic phase of EAE and point to a potential role for the fibronectin-α5β1 integrin interaction in promoting vascular remodeling during demyelinating disease.
Methods of Molecular Biology | 2014
Amin Boroujerdi; Ulrich Tigges; Jennifer V. Welser-Alves; Richard Milner
Pericytes are perivascular cells that play an important role in the development, maturation, and remodeling of blood vessels. However, studies of this important cell type on vascular remodeling have been hindered due to the difficulty of culturing pericytes in adequate numbers to high purity. In this chapter, we present a novel yet simple method to isolate and culture large numbers of pure pericytes from the mouse central nervous system (CNS). In our approach, vascular cells obtained from adult mice brains are cultured initially under conditions optimized for endothelial cells. Following two passages, the medium is switched over to optimize pericyte growth. After growing the cells for 2-3 additional passages, this approach produces a largely homogeneous population of cells that express the pericyte markers NG2, PDGFβ receptor, and CD146 but are negative for markers of endothelial cells (CD31), astrocytes (GFAP), and microglia (Mac-1), demonstrating a highly pure pericyte culture. Thus, our technique provides an effective method to culture CNS pericytes that is easy to establish and provides large numbers of highly pure pericytes for extended periods of time. This system provides a useful tool for those wishing to study pericyte behavior.
Methods of Molecular Biology | 2014
Jennifer V. Welser-Alves; Amin Boroujerdi; Richard Milner
Blood vessels in the central nervous system (CNS) are unique in forming the blood-brain barrier (BBB), which confers high electrical resistance and low permeability properties, thus protecting neural cells from potentially harmful blood components. Endothelial cells, which form the inner cellular lining of all blood vessels, play a critical role in this process by forming tight adhesive interactions between each other. To study the properties of primary brain endothelial cells (BECs), a number of different methods have been described. In this chapter, we present a relatively simple method that produces high numbers of primary mouse BECs that are highly pure (greater than 99 % CD31-positive). In addition, we also describe an immunocytochemical approach to demonstrate the endothelial purity of these cultures.
Experimental Neurology | 2015
Amin Boroujerdi; Richard Milner
In animal models, hypoxic pre-conditioning confers protection against subsequent neurological insults, mediated in part through an extensive vascular remodeling response. In light of the therapeutic potential of this effect, the goal of this study was to establish the dose-response relationship between level of hypoxia and the extent of cerebrovascular modeling, and to define the mildest level of hypoxia that promotes remodeling. Mice were exposed to different levels of continuous hypoxia (8-21% O2) for seven days before several aspects of vascular remodeling were evaluated, including endothelial proliferation, total vascular area, arteriogenesis, and fibronectin/α5β1 integrin expression. For most events, the threshold level of hypoxia that stimulated remodeling was 12-13% O2. Interestingly, many parameters displayed a biphasic dose-response curve, with peak levels attained at 10% O2, but declined thereafter. Further analysis in the 12-13% O2 range revealed that vascular remodeling occurs by two separate mechanisms: (i) endothelial hyperplasia, triggered by a hypoxic threshold of 13% O2, which leads to increased capillary growth, and (ii) endothelial hypertrophy, triggered by a more severe hypoxic threshold of 12% O2, which leads to expansion of large vessels and arteriogenesis. Taken together, these results define the hypoxic thresholds for vascular remodeling in the brain, and point to two separate mechanisms mediating this process.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Jennifer V. Welser-Alves; Amin Boroujerdi; Ulrich Tigges; Lawrence Wrabetz; M. Laura Feltri; Richard Milner
Objective—Laminin is a major component of the vascular basal lamina, implying that laminin receptors, such as &agr;6&bgr;1 and &agr;6&bgr;4 integrins, may regulate vascular remodeling and homeostasis. Previous studies in the central nervous system have shown that &bgr;4 integrin is expressed by only a fraction of cerebral vessels, but defining the vessel type and cellular source of &bgr;4 integrin has proved controversial. The goal of this study was to define the class of vessel and cell type expressing &bgr;4 integrin in cerebral vessels and to examine its potential role in vascular remodeling. Approach and Results—Dual-immunofluorescence showed that &bgr;4 integrin is expressed predominantly in arterioles, both in the central nervous system and in peripheral organs. Cell-specific knockouts of &bgr;4 integrin revealed that &bgr;4 integrin expression in cerebral vessels is derived from endothelial cells, not astrocytes or smooth muscle cells. Lack of endothelial &bgr;4 integrin had no effect on vascular development, integrity, or endothelial proliferation, but in the hypoxic central nervous system, its absence led to defective arteriolar remodeling and associated transforming growth factor–&bgr; signaling. Conclusions—These results define high levels of &bgr;4 integrin in arteriolar endothelial cells and demonstrate a novel link among &bgr;4 integrin, transforming growth factor–&bgr; signaling, and arteriolar remodeling in cerebral vessels.
Journal of Neuroinflammation | 2011
Jennifer V. Welser-Alves; Amin Boroujerdi; Ulrich Tigges; Richard Milner
BackgroundAs the primary resident immune cells, microglia play a central role in regulating inflammatory processes in the CNS. The extracellular matrix (ECM) protein vitronectin promotes microglial activation, switching microglia into an activated phenotype. We have shown previously that microglia express two vitronectin receptors, αvβ3 and αvβ5 integrins. As these integrins have well-defined roles in activation and phagocytic processes in other cell types, the purpose of the current study was to investigate the contribution of these two integrins in microglial activation.MethodsMicroglial cells were prepared from wild-type, β3 integrin knockout (KO), β5 integrin KO or β3/β5 integrin DKO mice, and their interactions and activation responses to vitronectin examined in a battery of assays, including adhesion, expression of activation markers, MMP-9 expression, and phagocytosis. Expression of other αv integrins was examined by flow cytometry and immunoprecipitation.ResultsSurprisingly, when cultured on vitronectin, microglia from the different knockout strains showed no obvious defects in adhesion, activation marker expression, MMP-9 induction, or phagocytosis of vitronectin-coated beads. To investigate the reason for this lack of effect, we examined the expression of other αv integrins. Flow cytometry showed that β3/β5 integrin DKO microglia expressed residual αv integrin at the cell surface, and immunoprecipitation confirmed this finding by revealing the presence of low levels of the αvβ1 and αvβ8 integrins. β1 integrin blockade had no impact on adhesion of β3/β5 integrin DKO microglia to vitronectin, suggesting that in addition to αvβ1, αvβ3, and αvβ5, αvβ8 also serves as a functional vitronectin receptor on microglia.ConclusionsTaken together, this demonstrates that the αvβ3 and αvβ5 integrins are not essential for mediating microglial activation responses to vitronectin, but that microglia use multiple redundant receptors to mediate interactions with this ECM protein.