Amin Farjudian
The University of Nottingham Ningbo China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amin Farjudian.
workshop on logic language information and computation | 2008
Amin Farjudian; Michal Konečný
We present an implementation of the domain-theoretic Picard method for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1]. Compared to Edalat and Pattinsons implementation, our algorithm uses a more efficient arithmetic based on an arbitrary precision floating-point library. Despite the additional overestimations due to floating-point rounding, we obtain a similar bound on the convergence rate of the produced approximations. Moreover, our convergence analysis is detailed enough to allow a static optimisation in the growth of the precision used in successive Picard iterations. Such optimisation greatly improves the efficiency of the solving process. Although a similar optimisation could be performed dynamically without our analysis, a static one gives us a significant advantage: we are able to predict the time it will take the solver to obtain an approximation of a certain (arbitrarily high) quality.
Theory of Computing Systems \/ Mathematical Systems Theory | 2007
Amin Farjudian
Since Di Gianantonio [1993] introduced his semantics for exact real number computation, there has always been a struggle to maintain data abstraction and efficiency as much as possible. The interval domain model-or its variations-can be regarded as the standard setting to obtain maximum data abstraction. As for efficiency there has been much focus on sequentiality to the extent that these two terms have become almost synonymous. Escardo et al. [1998, 2004] demonstrated that there is not much one can get by sequential computation in the interval domain model. In Farjudian [2004a, 2003] we reinforced this result by exposing the limited power of (some extensions of) the sequential fragment of Real-PCF. The previous argument suggests some sort of compromise in the beauty of the model in order to keep efficiency. One way forward is to try to sacrifice single-valuedness over partial real numbers. This is exactly what we will see in designing Shrad (which originally comes from Farjudian [2004b]) where we succeed in presenting a framework for exact real number computation which satisfies the following all at the same time: 1) It is sequential. 2) Multi-valuedness over total real numbers is carefully avoided. 3) All the computable first-order functions are defined in the language (expressivity).
Electronic Notes in Theoretical Computer Science | 2004
Amin Farjudian
Real PCF (RPCF) was proposed by Mart´ in Escardo( 8) as a language for Real number computation. One of the key — and most controversial — constants is parallel-if (pif I ), the existence of which causes a serious inefficiency in the language leading to RPCF being impractical. While search is being undertaken to replace pif I with a more efficient operator, one needs to be assured of the segment of RPCF without pif I being sequential. A positive answer to this question is the main result of this paper. On the other hand, we show that non-affine functions — such as f (x ): =x 2
Journal of Universal Computer Science | 2010
Michal Konecny; Amin Farjudian
We develop and study the concept of dataflow process networks as used for exampleby Kahn to suit exact computation over data types related to real numbers, such as continuous functions and geometrical solids. Furthermore, we consider communicating these exact objectsamong processes using protocols of a query-answer nature as introduced in our earlier work. This enables processes to provide valid approximations with certain accuracy and focusing on certainlocality as demanded by the receiving processes through queries. We define domain-theoretical denotational semantics of our networks in two ways: (1) directly, i. e. by viewing the whole network as a composite process and applying the process semantics introduced in our earlier work; and (2) compositionally, i. e. by a fixed-point construction similarto that used by Kahn from the denotational semantics of individual processes in the network. The direct semantics closely corresponds to the operational semantics of the network (i. e. it iscorrect) but very difficult to study for concrete networks. The compositional semantics enablescompositional analysis of concrete networks, assuming it is correct. We prove that the compositional semantics is a safe approximation of the direct semantics. Wealso provide a method that can be used in many cases to establish that the two semantics fully coincide, i. e. safety is not achieved through inactivity or meaningless answers. The results are extended to cover recursively-defined infinite networks as well as nested finitenetworks. A robust prototype implementation of our model is available.
Theoretical Computer Science | 2018
Eugenio Moggi; Amin Farjudian; Adam Duracz; Walid Taha
Abstract Hybrid systems—more precisely, their mathematical models—can exhibit behaviors, like Zeno behaviors, that are absent in purely discrete or purely continuous systems. First, we observe that, in this context, the usual definition of reachability—namely, the reflexive and transitive closure of a transition relation—can be unsafe, i.e., it may compute a proper subset of the set of states reachable in finite time from a set of initial states. Therefore, we propose safe reachability, which always computes a superset of the set of reachable states. Second, in safety analysis of hybrid and continuous systems, it is important to ensure that a reachability analysis is also robust w.r.t. small perturbations to the set of initial states and to the system itself, since discrepancies between a system and its mathematical models are unavoidable. We show that, under certain conditions, the best Scott continuous approximation of an analysis A is also its best robust approximation. Finally, we exemplify the gap between the set of reachable states and the supersets computed by safe reachability and its best robust approximation.
Applied Mathematics and Computation | 2018
Behrouz Emamizadeh; Amin Farjudian; Yichen Liu
We study the problem of optimal harvesting of a marine species in a bounded domain, with the aim of minimizing harm to the species, under the general assumption that the fishing boats have different capacities. This is a generalization of a result of Kurata and Shi, in which the boats were assumed to have the same maximum harvesting capacity. For this generalization, we need a completely different approach. As such, we use the theory of rearrangements of functions. We prove existence of solutions, and obtain an optimality condition which indicates that the more aggressive harvesting must be pushed toward the boundary of the domain. Furthermore, we prove that radial and Steiner symmetries of the domain are preserved by the solutions. We will also devise an algorithm for numerical solution of the problem, and present the results of some numerical experiments.
Canadian Journal of Mathematics | 2016
Behrouz Emamizadeh; Amin Farjudian; Mohsen Zivari-Rezapour
In this paper we introduce two rearrangement optimization problems, one being a maximization and the other a minimization problem, related to a nonlocal boundary value problem of Kirchhoff type. Using the theory of rearrangements as developed by G. R. Burton, we are able to show that both problems are solvable and derive the corresponding optimality conditions. These conditions in turn provide information concerning the locations of the optimal solutions.The strict convexity of the energy functional plays a crucial role in both problems. The popular case in which the rearrangement class (i.e., the admissible set) is generated by a characteristic function is also considered. We show that in this case, the maximization problem gives rise to a free boundary problem of obstacle type, which turns out to be unstable. On the other hand, the minimization problem leads to another free boundary problem of obstacle type that is stable. Some numerical results are included to conurm the theory.
international congress on mathematical software | 2014
Jan Duracz; Amin Farjudian; Michal Konečný; Walid Taha
We propose an arithmetic of function intervals as a basis for convenient rigorous numerical computation. Function intervals can be used as mathematical objects in their own right or as enclosures of functions over the reals. We present two areas of application of function interval arithmetic and associated software that implements the arithmetic: (1) Validated ordinary differential equation solving using the AERN library and within the Acumen hybrid system modeling tool. (2) Numerical theorem proving using the PolyPaver prover.
Journal of Optimization Theory and Applications | 2017
Behrouz Emamizadeh; Amin Farjudian; Hayk Mikayelyan
In this note, we consider a control theory problem involving a strictly convex energy functional, which is not Gâteaux differentiable. The functional came up in the study of a shape optimization problem, and here we focus on the minimization of this functional. We relax the problem in two different ways and show that the relaxed variants can be solved by applying some recent results on two-phase obstacle-like problems of free boundary type. We derive an important qualitative property of the solutions, i.e., we prove that the minimizers are three-valued, a result which significantly reduces the search space for the relevant numerical algorithms.
Nonautonomous Dynamical Systems | 2014
Behrouz Emamizadeh; Amin Farjudian
Abstract In this paper we consider a parametric eigenvalue problem related to a vibrating string which is constructed out of two different materials. Using elementary analysis we show that the corresponding principal eigenvalue is increasing with respect to the parameter. Using a rearrangement technique we recapture a part of our main result, in case the difference between the densities of the two materials is sufficiently small. Finally, a simple numerical algorithm will be presented which will also provide further insight into the dynamics of the non-principal eigenvalues of the system.