Amin Rezaei
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amin Rezaei.
Computers & Electrical Engineering | 2016
Amin Rezaei; Masoud Daneshtalab; Farshad Safaei; Danella Zhao
Due to high latency and high power consumption in long hops between operational cores of Network-on-Chips (NoCs), the performance of such architectures has been limited. Billions of transistors available on a single chip present opportunities for new levels of computing capability. In order to fill the gap between computing requirements and efficient communications, a new technology called Wireless NoC has been emerged. Employing wireless communication links between cores, wireless NoC has reasonably increased the performance of NoC. However, wireless transceivers along with associated antenna impose considerable area and power overheads in wireless NoCs. Thus, in this paper, we introduce a hybrid wireless NoC called Hierarchical Wireless-based Architecture (HiWA) to use the wireless resources optimally. In the proposed approach the network is divided into subnets where intra-subnet nodes communicate through wire links while inter-subnet communications are handled almost by single-hop wireless links. Simulation results show that HiWA efficiently reduces power consumption by 39% in comparison with a traditional wireless NoC, called WiNoC, while still achieves 16% lower packet latency than conventional NoC.
high performance computing systems and applications | 2014
Amin Rezaei; Farshad Safaei; Masoud Daneshtalab; Hannu Tenhunen
Due to high latency and high power consumption in long hops between operational cores of NoCs, the performance of such architectures has been limited. In order to fill the gap between computing requirements and efficient communications, a new technology called Wireless Network-on-Chip (WNoC) has been emerged. Employing wireless communication links between cores, the new technology has reasonably increased the performance of NoC. However, wireless transceivers along with associated antenna impose considerable area and power overheads in WNoCs. Thus, in this paper, we introduce a hierarchical WNoC called Hierarchical Wireless-based Architecture (HiWA) to use the wireless resources optimally. In the proposed approach the network is divided into subnets where intra-subnet nodes communicate through wire links while inter-subnet communications are almost handled by single-hop wireless links. On top of that, we have also defined performance evaluation parameters. Simulation results show that the proposed architecture reduces average packet latency 16% and power consumption 14% in comparison with its conventional counterparts.
parallel, distributed and network-based processing | 2016
Amin Rezaei; Masoud Daneshtalab; Maurizio Palesi; Danella Zhao
Wireless NoC is becoming popular to be a promising future on-chip interconnection network as a result of high bandwidth, low latency and flexible topology configurations provided by this emerging technology. Nonetheless, congestion occurrence in wireless routers negatively affects the usability of high speed wireless links and considerably increases the network latency, therefore, in this paper, a congestion-aware platform (CAP-W) is introduced for wireless NoCs in order to reduce both internal and external congestions. The whole platform of CAP-W consists of an adaptive routing algorithm that balances utilization of wired and wireless networks, a dynamic task mapping approach that tries to minimize congestion probability, and a task migration strategy that considers dynamic variation of application behaviors. Simulation results show significant gain in congestion control over PEs of wireless NoC, compared to state-of-the-art works.
design automation conference | 2016
Amin Rezaei; Danella Zhao; Masoud Daneshtalab; Hongyi Wu
Reliability is a critical feature of chip integration and unreliability can lead to performance, cost, and time-to-market penalties. Moreover, upcoming Many-Core System-on-Chips (MCSoCs), notably future generations of mobile devices, will suffer from high power densities due to the dark silicon problem. Thus, in this paper, a novel NoC-based MCSoC architecture, called Shift Sprinting, is introduced in order to reliably utilize dark silicon under the power budget constraint. By employing the concept of distributional sprinting, our proposed architecture provides Quality of Service (QoS) to efficiently run real-time streaming applications in mobile devices. Simulation results show meaningful gain in performance and reliability of the system compared to state-of-the-art works.
parallel, distributed and network-based processing | 2015
Amin Rezaei; Masoud Daneshtalab; Danella Zhao; Farshad Safaei; Xiaohang Wang; Masoumeh Ebrahimi
Because of high bandwidth, low latency and flexible topology configurations provided by wireless NoC, this emerging technology is gaining momentum to be a promising future on-chip interconnection paradigm. However, congestion occurrence in wireless routers reduces the benefit of high speed wireless links and significantly increases the network latency, therefore, in this paper, a Dynamic Application Mapping Algorithm (DAMA) is introduced for wireless NoCs in order to reduce both internal and external congestion. DAMA has three key steps: finding the first node to map, choosing the first task to be mapped onto the first node, and allocation of the remaining tasks to the remaining nodes. Simulation results show significant gain in the mapping cost functions compared to state-of-the-art works.
parallel, distributed and network-based processing | 2017
Amin Rezaei; Dan Zhao; Masoud Daneshtalab; Hai Zhou
Hybrid Wireless Network-on-Chip (HWNoC) provides high bandwidth, low latency and flexible topology configurations, making this emerging technology a scalable communication fabric for future Many-Core System-on-Chips (MCSoCs). On the other hand, dark silicon is dominating the chip footage of upcoming MCSoCs since Dennard scaling fails due to the voltage scaling problem that results in higher power densities. Moreover, congestion avoidance and hot-spot prevention are two important challenges of HWNoC-based MCSoCs in dark silicon age, Therefore, in this paper, a novel task mapping approach for HWNoC is introduced in order to first balance the usage of wireless links by avoiding congestion over wireless routers and second spread temperature across the whole chip by utilizing dark silicon. Simulation results show significant improvement in both congestion and temperature control of the system, compared to state-of-the-art works.
system on chip conference | 2016
Amin Rezaei; Masoud Daneshtalab; Dan Zhao; Mehdi Modarressi
Many-Core System-on-Chips (MCSoCs) require efficient task migration approach in order to reach system performance objectives such as load balancing, communication optimization, fault tolerance, and temperature control. In this paper an efficient self-aware migration approach is introduced for NoC-based MCSoCs using a centralized feedback controller in order to control the congestion over the system. The proposed approach is divided into four main steps: predicting behavior of the application, defining reliable triggers to initiate task migration, introducing cost comparison functions, and presenting a streamlined controlling mechanism to migrate tasks. The experimental results affirm that the proposed self-aware migration approach can help achieving significant throughput and system utilization while efficiently controlling system congestion.
Microprocessors and Microsystems | 2017
Amin Rezaei; Masoud Daneshtalab; Dan Zhao
Abstract In order to fulfill the ever-increasing demand for high-speed and high-bandwidth, wireless-based MCSoC is presented based on a NoC communication infrastructure. Inspiring the separation between the communication and the computation demands as well as providing the flexible topology configurations, makes wireless-based NoC a promising future MCSoC architecture. However, congestion occurrence in wireless routers reduces the benefit of high-speed wireless links and significantly increases the network latency. Therefore, in this paper, a congestion-aware platform, named CAP-W, is introduced for wireless-based NoC in order to reduce congestion in the network and especially over wireless routers. The triple-layer platform of CAP-W is composed of mapping, migration, and routing layers. In order to minimize the congestion probability, the mapping layer is responsible for selecting the suitable free core as the first candidate, finding the suitable first task to be mapped onto the selected core, and allocating other tasks with respect to contiguity. Considering dynamic variation of application behaviors, the migration layer modifies the primary task mapping to improve congestion situation. Furthermore, the routing layer balances utilization of wired and wireless networks by separating short-distance and long-distance communications. Experimental results show meaningful gain in congestion control of wireless-based NoC compared to state-of-the-art works.
applied reconfigurable computing | 2018
Raheel Afsharmazayejani; Fahimeh Yazdanpanah; Amin Rezaei; Mohammad Alaei; Masoud Daneshtalab
Although NoC-based systems with many cores are commercially available, their multi-hop nature has become a bottleneck on scaling performance and energy consumption parameters. Alternatively, hybrid wireless NoC provides a postern by exploiting single-hop express links for long-distance communications. Also, there is a common wisdom that grid-like mesh is the most stable topology in conventional designs. That is why almost all of the emerging architectures had been relying on this topology as well. In this paper, first we challenge the efficiency of the grid-like mesh in emerging systems. Then, we propose HoneyWiN, a hybrid reconfigurable wireless NoC architecture that relies on the honeycomb topology. The simulation results show that on average HoneyWiN saves 17% of energy consumption while increases the network throughput by 10% compared to its wireless mesh counterpart.
system on chip conference | 2016
Somayeh Maabi; Farshad Safaei; Amin Rezaei; Masoud Daneshtalab; Dan Zhao
With degradation in transistors dimensions and complication of circuits, Three-Dimensional Network-on-Chip (3-D NoC) is presented as a promising solution in electronic industry. By increasing the number of system components on a chip, the probability of failure will increase. Therefore, proposing fault tolerance mechanisms is an important target in emerging technologies. In this paper, two efficient fault-tolerant routing algorithms for 3-D NoC are presented. The presented algorithms have significant improvement in performance parameters, in exchange for small area overhead. Simulation results show that even with the presence of faults, the network latency is decreased in comparison with state-of-the-art works. In addition, the network reliability is improved reasonably.