Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amin Sagar is active.

Publication


Featured researches published by Amin Sagar.


Medical Hypotheses | 2012

Plasma gelsolin: A general prognostic marker of health

Nagesh Peddada; Amin Sagar; Ashish; Renu Garg

Plasma gelsolin (pGSN) is the only component of two member extracellular actin scavenger system capable of severing circulating actin microfilaments. Here, we put forth the hypothesis that pGSN level is an important and sensitive general prognostic biomarker for health and disease conditions in humans, urging the need for gelsolin replacement therapy to improve patients health status. Clinical significance and the therapeutic importance of this protein have been well illustrated in animal models as well as in patients with various diseases. Patients with decreased pGSN levels were observed to have higher mortality rate, longer hospital stay and longer ventilation time in intensive care units as compared to healthy controls. pGSN levels were found to be increasing in patients recovering from diseases; furthermore, it has been confirmed that repletion with exogenous recombinant pGSN increases the survival rate in animal models of different acute insults. To be used as a biomarker of health, however, establishing the accurate levels of gelsolin in human plasma and understanding its variance with age, race, gender and health status is a prerequisite. Upon establishing the accurate levels of pGSN in healthy individuals, this biomarker would predict the prognosis/disease progression in multiple health conditions and help in prioritizing the ones in-need of gelsolin replacement therapy.


Journal of Biological Chemistry | 2011

Visual Insight into How Low pH Alone Can Induce Actin-severing Ability in Gelsolin under Calcium-free Conditions

Renu Garg; Nagesh Peddada; Amin Sagar; Deepak Nihalani; Ashish

Gelsolin is a key actin cytoskeleton-modulating protein primarily regulated by calcium and phosphoinositides. In addition, low pH has also been suggested to activate gelsolin in the absence of Ca2+ ions, although no structural insight on this pathway is available except for a reported decrement in its diffusion coefficient at low pH. We also observed ∼1.6-fold decrease in the molecular mobility of recombinant gelsolin when buffer pH was lowered from 9 to 5. Analysis of the small angle x-ray scattering data collected over the same pH range indicated that the radius of gyration and maximum linear dimension of gelsolin molecules increased from 30.3 to 34.1 Å and from 100 to 125 Å, respectively. Models generated for each dataset indicated that similar to the Ca2+-induced process, low pH also promotes unwinding of this six-domain protein but only partially. It appeared that pH is able to induce extension of the G1 domain from the rest of the five domains, whereas the Ca2+-sensitive latch between G2 and G6 domains remains closed. Interestingly, increasing the free Ca2+ level to merely ∼40 nm, the partially open pH 5 shape “sprung open” to a shape seen earlier for this protein at pH 8 and 1 mm free Ca2+. Also, pH alone could induce a shape where the g3-g4 linker of gelsolin was open when we truncated the C-tail latch from this protein. Our results provide insight into how under physiological conditions, a drop in pH can fully activate the F-actin-severing shape of gelsolin with micromolar levels of Ca2+ available.


Journal of Biological Chemistry | 2013

Global shapes of F-actin depolymerization-competent minimal gelsolins: insight into the role of g2-g3 linker in pH/Ca2+ insensitivity of the first half.

Nagesh Peddada; Amin Sagar; Yogendra S. Rathore; Vikas Choudhary; U. Bharat K. Pattnaik; Neeraj Khatri; Renu Garg; Ashish

Background: Shape-function studies are necessary to design better therapeutic alternatives of the plasma gelsolin. Results: N-terminal fragment 30–161 is the smallest segment with F-actin depolymerization potential, and G1-G3 can function independent of Ca2+ ions or low pH. Conclusion: The g2-g3 linker plays a role in imparting pH/Ca2+ insensitivity to G1-G3. Significance: We provide the first evidence that g2-g3 linker regulates mobility of the G1 domain. Because of its ability to rapidly depolymerize F-actin, plasma gelsolin has emerged as a therapeutic molecule in different disease conditions. High amounts of exogenous gelsolin are, however, required to treat animal models of different diseases. Knowing that the F-actin depolymerizing property of gelsolin resides in its N terminus, we made several truncated versions of plasma gelsolin. The smaller versions, particularly the one composed of the first 28–161 residues, depolymerized the F-actin much faster than the native gelsolin and other truncates at the same molar ratios. Although G1-G3 loses its dependence on Ca2+ or low pH for the actin depolymerization function, interestingly, G1-G2 and its smaller versions were found to regain this requirement. Small angle x-ray scattering-based shape reconstructions revealed that G1-G3 adopts an open shape in both the presence and the absence of Ca2+ as well as low pH, whereas G1-G2 and residues 28–161 prefer collapsed states in Ca2+-free conditions at pH 8. The mutations in the g2-g3 linker resulted in the calcium sensitivity of the mutant G1-G3 for F-actin depolymerization activity, although the F-actin-binding sites remained exposed in the mutant G1-G3 as well as in the smaller truncates even in the Ca2+-free conditions at pH 8. Furthermore, unlike wild type G1-G3, calcium-sensitive mutants of G1-G3 acquired closed shapes in the absence of free calcium, implying a role of g2-g3 linker in determining the open F-actin depolymerizing-competent shape of G1-G3 in this condition. We demonstrate that the mobility of the G1 domain, essential for F-actin depolymerization, is indirectly regulated by the gelsolin-like sequence of g2-g3 linker.


PLOS ONE | 2015

Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice.

Ashok Kumar Gupta; Devraj Parasar; Amin Sagar; Vikas Choudhary; Bhupinder Singh Chopra; Renu Garg; Ashish; Neeraj Khatri

Plasma gelsolin levels significantly decline in several disease conditions, since gelsolin gets scavenged when it depolymerizes and caps filamentous actin released in the circulation following tissue injury. It is well established that our body require/implement inflammatory and analgesic responses to protect against cell damage and injury to the tissue. This study was envisaged to examine analgesic and anti-inflammatory activity of exogenous gelsolin (8 mg/mouse) in mice models of pain and acute inflammation. Administration of gelsolin in acetic acid-induced writhing and tail immersion tests not only demonstrated a significant reduction in the number of acetic acid-induced writhing effects, but also exhibited an analgesic activity in tail immersion test in mice as compared to placebo treated mice. Additionally, anti-inflammatory function of gelsolin (8 mg/mouse) compared with anti-inflammatory drug diclofenac sodium (10 mg/kg)] was confirmed in the carrageenan injection induced paw edema where latter was measured by vernier caliper and fluorescent tomography imaging. Interestingly, results showed that plasma gelsolin was capable of reducing severity of inflammation in mice comparable to diclofenac sodium. Analysis of cytokines and histo-pathological examinations of tissue revealed administration of gelsolin and diclofenac sodium significantly reduced production of pro-inflammatory cytokines, TNF-α and IL-6. Additionally, carrageenan groups pretreated with diclofenac sodium or gelsolin showed a marked decrease in edema and infiltration of inflammatory cells in paw tissue. Our study provides evidence that administration of gelsolin can effectively reduce the pain and inflammation in mice model.


Biochemical and Biophysical Research Communications | 2013

Visualizing the elusive open shape of G-actin in solution by SAXS data analysis.

Amin Sagar; Nagesh Peddada; Ashish K. Solanki; Vikas Choudhary; Renu Garg; Ashish

Though biochemical data upholds that ATP hydrolysis induces an opening of the nucleotide binding cleft, crystal structures of the G-actin in the absence of profillin represent the closed structure, regardless of the bound ATP/ADP. Analysis of small angle X-ray scattering (SAXS) intensities confirmed that ATP hydrolysis increases the radius of gyration (R(G)) and maximum linear dimension (D(max)) of G-actin molecules from 22.3 to 23.7 Ǻ and 70 to 78 Å, respectively. Kratky analysis confirmed that G-actin molecules behave like globular scattering particles regardless of the bound nucleotide state. Shape reconstruction using dummy residues and inertial axes overlay with known crystal structures confirmed that the ATP or AMP-PNP bound G-actin adopts a compact shape, and the nucleotide binding site opens up with ATP hydrolysis. Importantly, our ADP-state model resembled the open shape seen for β-actin and hexokinase.


Journal of Biomolecular Structure & Dynamics | 2014

A communication network within the cytoplasmic domain of toll-like receptors has remained conserved during evolution

Shikha Singh; Kalpana Pandey; Yogendra S. Rathore; Amin Sagar; U. Bharat K. Pattnaik; Ashish

Toll/IL-1R (TIR) domain, that is, the cytoplasmic domain, in toll-like receptors (TLRs) from different species showed high sequence conservation in stretches spread across the surface as well as the core of the domain. To probe the structure–function significance of these residues, especially those coming from the core of TIR domains, we analyzed molecular dynamics trajectories of sequence similarity based models of human TIR domains. This study brought forth that N-terminal of the TIR domain simultaneously interacts with the flanking residues of the BB loop and central β-sheets. At the same time, residues of the central β-strands form favorable contacts with the DD loop and C-terminal, thus forming a two-way circuit between the N- and C-termini. In this work, the array of intradomain interactions is termed as communication network. Importantly, the “hubs” of this communication network were found to be conserved in all human TLRs. Earlier mutagenesis–function correlation work brought forth that certain mutations in the “core” of the TIR domain of TLR4 (e.g. in IFI767–769AAA and L815A) led to almost complete abrogation of signaling and reasoning for this dramatic loss-of-function has remained unclear, since these sites are not surface exposed. Using MD studies, we show here that this communication network gets disrupted in mutants of human TLR4 which were earlier reported to be functionally compromised. Extension of MD studies to heterodimer of TLR1/2 suggested that this evolutionarily conserved communication network senses the interactions formed upon dimerization and relays it to surfaces which are not involved in direct interdomain contacts.


Experimental Diabetes Research | 2014

Plasma Gelsolin Levels Decrease in Diabetic State and Increase upon Treatment with F-Actin Depolymerizing Versions of Gelsolin

Neeraj Khatri; Amin Sagar; Nagesh Peddada; Vikas Choudhary; Bhupinder Singh Chopra; Veena Garg; Renu Garg; Ashish

The study aims to map plasma gelsolin (pGSN) levels in diabetic humans and mice models of type II diabetes and to evaluate the efficacy of gelsolin therapy in improvement of diabetes in mice. We report that pGSN values decrease by a factor of 0.45 to 0.5 in the blood of type II diabetic humans and mice models. Oral glucose tolerance test in mice models showed that subcutaneous administration of recombinant pGSN and its F-actin depolymerizing competent versions brought down blood sugar levels comparable to Sitagliptin, a drug used to manage hyperglycemic condition. Further, daily dose of pGSN or its truncated versions to diabetic mice for a week kept sugar levels close to normal values. Also, diabetic mice treated with Sitagliptin for 7 days, showed increase in their pGSN values with the decrease in blood glucose as compared to their levels at the start of treatment. Gelsolin helped in improving glycemic control in diabetic mice. We propose that gelsolin level monitoring and replacement of F-actin severing capable gelsolin(s) should be considered in diabetic care.


Scientific Reports | 2017

Targeting Neph1 and ZO-1 protein-protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function

Amin Sagar; Ehtesham Arif; Ashish K. Solanki; Pankaj Srivastava; Michael G. Janech; Seok-Hyung Kim; Joshua H. Lipschutz; Sang-Ho Kwon; Ashish; Deepak Nihalani

Targeting protein-protein interaction (PPI) is rapidly becoming an attractive alternative for drug development. While drug development commonly involves inhibiting a PPI, in this study, we show that stabilizing PPI may also be therapeutically beneficial. Junctional proteins Neph1 and ZO-1 and their interaction is an important determinant of the structural integrity of slit diaphragm, which is a critical component of kidney’s filtration system. Since injury induces loss of this interaction, we hypothesized that strengthening this interaction may protect kidney’s filtration barrier and preserve kidney function. In this study, Neph1-ZO-1 structural complex was screened for the presence of small druggable pockets formed from contributions from both proteins. One such pocket was identified and screened using a small molecule library. Isodesmosine (ISD) a rare naturally occurring amino acid and a biomarker for pulmonary arterial hypertension was selected as the best candidate and to establish the proof of concept, its ability to enhance Neph1-CD and ZO-1 binding was tested. Results from biochemical binding analysis showed that ISD enhanced Neph1 and ZO-1 interaction under in vitro and in vivo conditions. Importantly, ISD treated podocytes were resistant to injury-induced loss of transepithelial permeability. Finally, mouse and zebrafish studies show that ISD protects from injury-induced renal damage.


Scientific Reports | 2017

Search for non-lactam inhibitors of mtb β-lactamase led to its open shape in apo state: new concept for antibiotic design

Amin Sagar; Nazia Haleem; Yaawar Mir Bashir; Ashish

Mtb β-lactamase (BlaC) is extremely efficient in hydrolyzing ß-lactam antibiotics which renders/leads to protection and/or resistance to this bug. There is a compelling need to develop new non-lactam inhibitors which can bind and inhibit BlaC, but cannot be hydrolyzed, thus neutralizing this survival mechanism of Mtb. Using the crystal structure of BlaC we screened 750000 purchasable compounds from ZINC Database for their theoretical affinity to the enzyme’s active site. 32 of the best hits of the compounds having tetra-, tri- and thiadi-azole moiety were tested in vitro, and 4 efficiently inhibited the enzymatic activity of recombinant BlaC. Characterization of the shape of BlaC−/+ inhibitors by small angle X-ray scattering (SAXS) brought forth that BlaC adopts: (1) an open shape (radius of gyration of 2.3 nm compared to 1.9 nm of crystal structures) in solution; (2) closed shape similar to observed crystal structure(s) in presence of effective inhibitor; and (3) a closed shape which opens up when a hydrolysable inhibitor is present in solution. New BlaC inhibitors were: 1-(4-(pyridin-3-yl)-thiazol-2-ylamino)-2-(7,8,9-triaza-bicyclo[4.3.0]nona-1(6),2,4,8-tetraen-7-yl)-ethanone; 8-butyl-3-((5-(pyridin-2-yl)-4H-1,2,4-triazol-3-ylamino)-formyl)-8-aza-bicyclo[4.3.0]nona-1(6),2,4-triene-7,9-dione; 1-(3-((5-(5-bromo-thiophen-2-yl)-1,3,4-oxadiazol-2-yl)-methoxy)-phenyl)-1H-1,2,3,4-tetraazole; and 1-(2,3-dimethyl-phenylamino)-2-(2-(1-(2-methoxy-5-methyl-phenyl)-1H-1,2,3,4-tetraazol-5-ylsulfanyl)-acetylamino)-ethanone. The open-close shape of BlaC questions the physiological significance of the closed shape known for BlaC−/+ inhibitors and paves new path for structure aided design of novel inhibitors.


Journal of Physical Chemistry B | 2015

SAXS Data Based Global Shape Analysis of Trigger Factor (TF) Proteins from E. coli, V. cholerae, and P. frigidicola: Resolving the Debate on the Nature of Monomeric and Dimeric Forms.

Yogendra S. Rathore; Reema R. Dhoke; Maulik D. Badmalia; Amin Sagar; Ashish

Collaboration


Dive into the Amin Sagar's collaboration.

Top Co-Authors

Avatar

Ashish

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Nagesh Peddada

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Renu Garg

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Vikas Choudhary

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Ashish

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Neeraj Khatri

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Yogendra S. Rathore

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Bhupinder Singh Chopra

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

U. Bharat K. Pattnaik

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Deepak Nihalani

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge