Amina M. Bagher
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amina M. Bagher.
British Journal of Pharmacology | 2015
Robert B. Laprairie; Amina M. Bagher; M.E.M. Kelly; Eileen M. Denovan-Wright
Cannabidiol has been reported to act as an antagonist at cannabinoid CB1 receptors. We hypothesized that cannabidiol would inhibit cannabinoid agonist activity through negative allosteric modulation of CB1 receptors.
Journal of Biological Chemistry | 2014
Robert B. Laprairie; Amina M. Bagher; Melanie E. M. Kelly; Denis J. Dupré; Eileen M. Denovan-Wright
Background: To understand the differential response to cannabinoids, we examined the functional selectivity of type 1 cannabinoid receptor (CB1) agonists in a cell model of striatal neurons. Results: 2-Arachidonylglycerol, Δ9-tetrahydrocannabinol, and CP55,940 were arrestin2-selective; endocannabinoids and WIN55,212-2 activated Gαi/o, Gβγ, and Gαq; and cannabidiol activated Gαs independent of CB1. Conclusion: Cannabinoids displayed functional selectivity. Significance: CB1 functional selectivity may be exploited to maximize therapeutic efficacy. Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) on arrestin2-, Gαi/o-, Gβγ-, Gαs-, and Gαq-mediated intracellular signaling in the mouse STHdhQ7/Q7 cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gαi/o and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gαq-dependent pathways. CP55,940 and CBD both signaled through Gαs. CP55,940, but not CBD, activated downstream Gαs pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias.
European Journal of Pharmacology | 2014
Jessica N. MacIntyre; Alex X. Dong; Alex Straiker; Jiequan Zhu; Susan E. Howlett; Amina M. Bagher; Eileen M. Denovan-Wright; Dao-Yi Yu; Melanie E. M. Kelly
The endocannabinoid system plays a role in regulation of vasoactivity in the peripheral vasculature; however, little is known about its role in regulation of the CNS microvasculature. This study investigated the pharmacology of cannabinoids and cannabimimetic lipids in the retinal microvasculature, a CNS vascular bed that is autoregulated. Vessel diameter (edge detector) and calcium transients (fura-2) were recorded from segments of retinal microvasculature isolated from adult, male Fischer 344 rats. Results showed that abnormal cannabidiol (Abn-CBD), an agonist at the putative endothelial cannabinoid receptor, CBe, inhibited endothelin 1 (ET-1) induced vasoconstriction in retinal arterioles. These actions of Abn-CBD were independent of CB1/CB2 receptors and were not mediated by agonists for GPR55 or affected by nitric oxide synthase (NOS) inhibition. However, the vasorelaxant effects of Abn-CBD were abolished when the endothelium was removed and were inhibited by the small Ca(2+)-sensitive K channel (SKCa) blocker, apamin. The effects of the endogenous endocannabinoid metabolite, N-arachidonyl glycine (NAGly), a putative agonist for GPR18, were virtually identical to those of Abn-CBD. GPR18 mRNA and protein were present in the retina, and immunohistochemistry demonstrated that GPR18 was localized to the endothelium of retinal vessels. These findings demonstrate that Abn-CBD and NAGly inhibit ET-1 induced vasoconstriction in retinal arterioles by an endothelium-dependent signaling mechanism that involves SKCa channels. The endothelial localization of GPR18 suggests that GPR18 could contribute to cannabinoid and lipid-mediated retinal vasoactivity.
Molecular Pharmacology | 2016
Robert B. Laprairie; Amina M. Bagher; Melanie E. M. Kelly; Eileen M. Denovan-Wright
Huntington disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder with limited treatment options. Prior to motor symptom onset or neuronal cell loss in HD, levels of the type 1 cannabinoid receptor (CB1) decrease in the basal ganglia. Decreasing CB1 levels are strongly correlated with chorea and cognitive deficit. CB1 agonists are functionally selective (biased) for divergent signaling pathways. In this study, six cannabinoids were tested for signaling bias in in vitro models of medium spiny projection neurons expressing wild-type (STHdhQ7/Q7) or mutant huntingtin protein (STHdhQ111/Q111). Signaling bias was assessed using the Black and Leff operational model. Relative activity [ΔlogR (τ/KA)] and system bias (ΔΔlogR) were calculated relative to the reference compound WIN55,212-2 for Gαi/o, Gαs, Gαq, Gβγ, and β-arrestin1 signaling following treatment with 2-arachidonoylglycerol (2-AG), anandamide (AEA), CP55,940, Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and THC+CBD (1:1), and compared between wild-type and HD cells. The Emax of Gαi/o-dependent extracellular signal-regulated kinase (ERK) signaling was 50% lower in HD cells compared with wild-type cells. 2-AG and AEA displayed Gαi/o/Gβγ bias and normalized CB1 protein levels and improved cell viability, whereas CP55,940 and THC displayed β-arrestin1 bias and reduced CB1 protein levels and cell viability in HD cells. CBD was not a CB1 agonist but inhibited THC-dependent signaling (THC+CBD). Therefore, enhancing Gαi/o-biased endocannabinoid signaling may be therapeutically beneficial in HD. In contrast, cannabinoids that are β-arrestin-biased—such as THC found at high levels in modern varieties of marijuana—may be detrimental to CB1 signaling, particularly in HD where CB1 levels are already reduced.
Current Opinion in Pharmacology | 2017
Robert B. Laprairie; Amina M. Bagher; Eileen M. Denovan-Wright
HIGHLIGHTSCannabinoid receptors are pleiotropically‐coupled GPCRs.Few studies quantify cannabinoid bias using Black and Leffs operational model.Correlations between cannabinoid bias in vitro and in vivo are just being measured.Understanding cannabinoid bias could yield effective cannabinoid‐based drugs. &NA; The G protein‐coupled cannabinoid receptors CB1, CB2, GPR18, and GPR55 regulate neurotransmission, pain, and inflammation and have been intensively investigated as potential drug targets. Each of these GPCRs is coupled to multiple effector proteins mediating divergent cellular signals. The ligand bias of cannabinoid‐targeted compounds is only beginning to be quantified. Research into cannabinoid bias is now revealing correlations between bias in cell culture and functional outcomes in vivo. We present an example study of cannabinoid bias in the context of Huntington disease. In future, an understanding of cannabinoid receptor structure and quantification of ligand bias will optimize drug selection matched to patient population and disease.
European Journal of Pharmacology | 2013
Amina M. Bagher; Robert B. Laprairie; Melanie E. M. Kelly; Eileen M. Denovan-Wright
The human type 1 cannabinoid (hCB1) receptor is expressed at high levels in the central nervous system. mRNA variants of the coding region of this receptor, human cannabinoid hCB1a and hCB1b receptors, have been identified, their biological function remains unclear. The present study demonstrated that the three human cannabinoid hCB1 coding region variants are expressed in the human and monkey (Macaca fascicularis) brain. Western blot analyses of homogenates from different regions of the monkey brain demonstrated that proteins with the expected molecular weights of the cannabinoid CB1, CB1a and CB1b receptors were co-expressed throughout the brain. Given the co-localization of these receptors, we hypothesized that physical interactions between the three splice variants may affect cannabinoid pharmacology. The human cannabinoid hCB1, hCB1a, and hCB1b receptors formed homodimers and heterodimers, as determined by BRET in transiently transfected HEK 293A cells. We found that the co-expression of the human cannabinoid hCB1 and each of the splice variants increased cell surface expression of the human cannabinoid hCB1 receptor and increased Gi/o-dependent ERK phosphorylation in response to cannabinoid agonists. Therefore, the human cannabinoid hCB1 coding region splice variants play an important physiological role in the activity of the endocannabinoid system.
Molecular Pharmacology | 2016
Amina M. Bagher; Robert B. Laprairie; Melanie E. M. Kelly; Eileen M. Denovan-Wright
Activation of dopamine receptor 2 long (D2L) switches the signaling of type 1 cannabinoid receptor (CB1) from Gαi to Gαs, a process thought to be mediated through CB1-D2L heteromerization. Given the clinical importance of D2 antagonists, the goal of this study was to determine if D2 antagonists could modulate CB1 signaling. Interactions between CB1 and D2L, Gαi, Gαs, and β-arrestin1 were studied using bioluminescence resonance energy transfer 2 (BRET2) in STHdhQ7/Q7 cells. CB1-dependent extracellular regulated kinase (ERK)1/2, CREB phosphorylation, and CB1 internalization following cotreatment of CB1 agonist and D2 antagonist were quantified. Preassembled CB1-Gαi complexes were detected by BRET2. Arachidonyl-2′-chloroethylamide (ACEA), a selective CB1 agonist, caused a rapid and transient increase in BRET efficiency (BRETEff) between Gαi-Rluc and CB1–green fluorescent protein 2 (GFP2), and a Gαi-dependent increase in ERK phosphorylation. Physical interactions between CB1 and D2L were observed using BRET2. Cotreatment of STHdhQ7/Q7 cells with ACEA and haloperidol, a D2 antagonist, inhibited BRETEff signals between Gαi-Rluc and CB1-GFP2 and reduced the EMax and pEC50 of ACEA-mediated Gαi-dependent ERK phosphorylation. ACEA and haloperidol cotreatments produced a delayed and sustained increase in BRETEff between Gαs-Rluc and CB1-GFP2 and increased the EMax and pEC50 of ACEA-induced Gαs-dependent cAMP response element-binding protein phosphorylation. In cells expressing CB1 and D2L treated with ACEA, binding of haloperidol to D2 receptors switched CB1 coupling from Gαi to Gαs. In addition, haloperidol treatment reduced ACEA-induced β-arrestin1 recruitment to CB1 and CB1 internalization. D2 antagonists allosterically modulate cannabinoid-induced CB1 coupling, signaling, and β-arrestin1 recruitment through binding to CB1-D2L heteromers. These findings indicate that D2 antagonism, like D2 agonists, change agonist-mediated CB1 coupling and signaling.
Pharmacology Research & Perspectives | 2015
Robert B. Laprairie; Amina M. Bagher; Sophie V. Precious; Eileen M. Denovan-Wright
The endocannabinoid system (ECS) and the dopaminergic system (DAS) are two major regulators of basal ganglia function. During Huntingtons disease (HD) pathogenesis, the expression of genes in both the ECS and DAS is dysregulated. The purpose of this study was to determine the changes that were consistently observed in the ECS and DAS during HD progression in the central nervous system (CNS) and in the periphery in different models of HD and human HD tissue. To do this, we conducted a meta‐analysis of differential gene expression in the ECS and DAS using publicly available microarray data. The consolidated data were summarized as observed changes in gene expression (OCGE) using a weighted sum for each gene. In addition, consolidated data were compared to previously published studies that were not available in the gene expression omnibus (GEO) database. The resulting data confirm gene expression changes observed using different approaches and provide novel insights into the consistency between changes observed in human tissue and various models, as well as disease stage‐ and tissue‐specific transcriptional dysregulation in HD. The major implication of the systems‐wide data presented here is that therapeutic strategies targeting the ECS or DAS must consider the dynamic changes in gene expression over time and in different body areas, which occur during HD progression and the interconnectedness of the two systems.
European Journal of Pharmacology | 2017
Amina M. Bagher; Robert Laprairie; J. Thomas Toguri; Melanie E. M. Kelly; Eileen M. Denovan-Wright
ABSTRACT Type 1 cannabinoid (CB1) and dopamine 2 long form (D2L) receptors can physically interact to form heteromers that display unique pharmacology in vitro compared to homomeric complexes. Co‐expression of CB1 and D2L and co‐application of CB1 and D2 agonists increases cAMP levels while administration of either agonist alone decreases cAMP levels. To understand the observed co‐agonist response, our first goal of the current study was to define the stoichiometry of CB1/D2L/G&agr; protein complexes. Using bioluminescence resonance energy transfer 2 (BRET2), we confirmed that, CB1 homodimers, D2L homodimers, and CB1/D2L heteromers are formed. By using sequential resonance energy transfer 2 (SRET2) combined with bimolecular fluorescence complementation (BiFC), we were able to demonstrate that CB1/D2L form heterotetramers consisting of CB1 and D2L homodimers. We demonstrated that CB1/D2L heterotetramers are coupled to at least two G&agr; proteins. The second aim of the study was to investigate allosteric effects of a D2L agonist (quinpirole) on CB1 receptor function and to investigate the effects of a CB1 agonist [arachidonyl‐2‐chloroethylamide (ACEA)] on D2L receptor function within CB1/D2L heterotetramers. Treating cells co‐expressing CB1 and D2L with both ACEA and quinpirole switched CB1 and D2L receptor coupling and signaling from G&agr;i to G&agr;s proteins, enhanced &bgr;‐arrestin1 recruitment and receptor co‐internalization. The concept of bidirectional allosteric interaction within CB1/D2 heterotetramers has important implications for understanding the activity of receptor complexes in native tissues and under pathological conditions.
Archive | 2018
Amina M. Bagher; Robert B. Laprairie; Melanie E. M. Kelly; Eileen M. Denovan-Wright
G protein-coupled receptors (GPCRs) interact with multiple intracellular effector proteins such that different ligands may preferentially activate one signal pathway over others, a phenomenon known as signaling bias. Signaling bias can be quantified to optimize drug selection for preclinical research. Here, we describe moderate-throughput methods to quantify signaling bias of known and novel compounds. In the example provided, we describe a method to define cannabinoid-signaling bias in a cell culture model of Huntingtons disease (HD). Decreasing type 1 cannabinoid receptor (CB1) levels is correlated with chorea and cognitive deficits in HD. There is evidence that elevating CB1 levels and/or signaling may be beneficial for HD patients while decreasing CB1 levels and/or signaling may be detrimental. Recent studies have found that Gαi/o-biased CB1 agonists activate extracellular signal-regulated kinase (ERK), increase CB1 protein levels, and improve viability of cells expressing mutant huntingtin. In contrast, CB1 agonists that are β-arrestin1-biased were found to reduce CB1 protein levels and cell viability. Measuring agonist bias of known and novel CB1 agonists will provide important data that predict CB1-specific agonists that might be beneficial in animal models of HD and, following animal testing, in HD patients. This method can also be applied to study signaling bias for other GPCRs.