Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amine Belaid is active.

Publication


Featured researches published by Amine Belaid.


PLOS ONE | 2013

Two Panels of Plasma MicroRNAs as Non-Invasive Biomarkers for Prediction of Recurrence in Resectable NSCLC

Céline Sanfiorenzo; Marius Ilie; Amine Belaid; Fabrice Barlesi; Jérôme Mouroux; Charles-Hugo Marquette; Patrick Brest; Paul A. M. Hofman

The diagnosis of non-small cell lung carcinoma (NSCLC) at an early stage, as well as better prediction of outcome remains clinically challenging due to the lack of specific and robust non-invasive markers. The discovery of microRNAs (miRNAs), particularly those found in the bloodstream, has opened up new perspectives for tumor diagnosis and prognosis. The aim of our study was to determine whether expression profiles of specific miRNAs in plasma could accurately discriminate between NSCLC patients and controls, and whether they are able to predict the prognosis of resectable NSCLC patients. We therefore evaluated a series of seventeen NSCLC-related miRNAs by quantitative real-time (qRT)-PCR in plasma from 52 patients with I-IIIA stages NSCLC, 10 patients with chronic obstructive pulmonary disease (COPD) and 20-age, sex and smoking status-matched healthy individuals. We identified an eleven-plasma miRNA panel that could distinguish NSCLC patients from healthy subjects (AUC = 0.879). A six-plasma miRNA panel was able to discriminate between NSCLC patients and COPD patients (AUC = 0.944). Furthermore, we identified a three-miRNA plasma signature (high miR-155-5p, high miR-223-3p, and low miR-126-3p) that significantly associated with a higher risk for progression in adenocarcinoma patients. In addition, a three-miRNA plasma panel (high miR-20a-5p, low miR-152-3p, and low miR-199a-5p) significantly predicted survival of squamous cell carcinoma patients. In conclusion, we identified two plasma miRNA expression profiles that may be useful for predicting the outcome of patients with resectable NSCLC.


Toxicological Sciences | 2011

Cadmium-Induced Autophagy in Rat Kidney: An Early Biomarker of Subtoxic Exposure

Abderrahman Chargui; Sami Zekri; Grégory Jacquillet; Isabelle Rubera; Marius Ilie; Amine Belaid; Christophe Duranton; Michel Tauc; Paul Hofman; P. Poujeol; Michèle V. El May; Baharia Mograbi

Environmental exposures to cadmium (Cd) are a major cause of human toxicity. The kidney is the most sensitive organ; however, the natures of injuries and of adaptive responses have not been adequately investigated, particularly in response to environmental relevant Cd concentrations. In this study, rats received a daily ip injection of low CdCl₂ dose (0.3 mg Cd/kg body mass) and killed at 1, 3, and 5 days of intoxication. Functional, ultrastructural, and biochemical observations were used to evaluate Cd effects. We show that Cd at such subtoxic doses does not affect the tubular functions nor does it induce apoptosis. Meanwhile, Cd accumulates within lysosomes of proximal convoluted tubule (PCT) cells where it triggers cell proliferation and autophagy. By developing an immunohistochemical assay, a punctate staining of light chain 3-II is prominent in Cd-intoxicated kidneys, as compared with control. We provide the evidence of a direct upregulation of autophagy by Cd using a PCT cell line. Compared with the other heavy metals, Cd is the most powerful inducer of endoplasmic reticulum stress and autophagy in PCT cells, in relation to the hypersensitivity of PCT cells. Altogether, these findings suggest that kidney cortex adapts to subtoxic Cd dose by activating autophagy, a housekeeping process that ensures the degradation of damaged proteins. Given that Cd is persistent within cytosol, it might damage proteins continuously and impair at long-term autophagy efficiency. We therefore propose the autophagy pathway as a new sensitive biomarker for renal injury even after exposure to subtoxic Cd doses.


Current Molecular Medicine | 2010

Autophagy and Crohn's Disease: At the Crossroads of Infection, Inflammation, Immunity, and Cancer

Patrick Brest; E.A. Corcelle; Annabelle Cesaro; Abderrahman Chargui; Amine Belaid; Daniel J. Klionsky; Valérie Vouret-Craviari; Xavier Hébuterne; Paul Hofman; Baharia Mograbi

Inflammatory bowel diseases (IBD) are common inflammatory disorders of the gastrointestinal tract that include ulcerative colitis (UC) and Crohns disease (CD). The incidences of IBD are high in North America and Europe, affecting as many as one in 500 people. These diseases are associated with high morbidity and mortality. Colorectal cancer risk is also increased in IBD, correlating with inflammation severity and duration. IBD are now recognized as complex multigenetic disorders involving at least 32 different risk loci. In 2007, two different autophagy-related genes, ATG16L1 (autophagy-related gene 16-like 1) and IRGM (immunity-related GTPase M) were shown to be specifically involved in CD susceptibility by three independent genome-wide association studies. Soon afterwards, more than forty studies confirmed the involvement of ATG16L1 and IRGM variants in CD susceptibility and gave new information on the importance of macroautophagy (hereafter referred to as autophagy) in the control of infection, inflammation, immunity and cancer. In this review, we discuss how such findings have undoubtedly changed our understanding of CD pathogenesis. A unifying autophagy model then emerges that may help in understanding the development of CD from bacterial infection, to inflammation and finally cancer. The Pandoras box is now open, releasing a wave of hope for new therapeutic strategies in treating Crohns disease.


Cancer Research | 2013

Autophagy Plays a Critical Role in the Degradation of Active RHOA, the Control of Cell Cytokinesis, and Genomic Stability

Amine Belaid; Michael Cerezo; Abderrahman Chargui; Elisabeth Corcelle-Termeau; Florence Pedeutour; Sandy Giuliano; Marius Ilie; Isabelle Rubera; Michel Tauc; Sophie Barale; Corinne Bertolotto; Patrick Brest; Valérie Vouret-Craviari; Daniel J. Klionsky; Georges F. Carle; Paul Hofman; Baharia Mograbi

Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth. Here, we identify RHOA as the molecular target by which autophagy maintains genomic stability. Specifically, inhibition of autophagosome degradation by the loss of the v-ATPase a3 (TCIRG1) subunit is sufficient to induce aneuploidy. Underlying this phenotype, active RHOA is sequestered via p62 (SQSTM1) within autolysosomes and fails to localize to the plasma membrane or to the spindle midbody. Conversely, inhibition of autophagosome formation by ATG5 shRNA dramatically increases localization of active RHOA at the midbody, followed by diffusion to the flanking zones. As a result, all of the approaches we examined that compromise autophagy (irrespective of the defect: autophagosome formation, sequestration, or degradation) drive cytokinesis failure, multinucleation, and aneuploidy, processes that directly have an impact upon cancer progression. Consistently, we report a positive correlation between autophagy defects and the higher expression of RHOA in human lung carcinoma. We therefore propose that autophagy may act, in part, as a safeguard mechanism that degrades and thereby maintains the appropriate level of active RHOA at the midbody for faithful completion of cytokinesis and genome inheritance.


Autophagy | 2014

Autophagy and SQSTM1 on the RHOA(d) again: emerging roles of autophagy in the degradation of signaling proteins.

Amine Belaid; Papa Diogop Ndiaye; Michael Cerezo; Laurence Cailleteau; Patrick Brest; Daniel J. Klionsky; Georges F. Carle; Paul Hofman; Baharia Mograbi

Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth, its survival, and its motility. Emerging evidence suggests that autophagy limits several signaling pathways by degrading kinases, downstream components, and transcription factors; however, this often occurs under stressful conditions. Our recent studies revealed that constitutive autophagy temporally and spatially controls the RHOA pathway. Specifically, inhibition of autophagosome degradation induces the accumulation of the GTP-bound form of RHOA. The active RHOA is sequestered via SQSTM1/p62 within autolysosomes, and accordingly fails to localize to the spindle midbody or to the cell surface, as we demonstrate herein. As a result, all RHOA-downstream responses are deregulated, thus driving cytokinesis failure, aneuploidy and motility, three processes that directly have an impact upon cancer progression. We therefore propose that autophagy acts as a degradative brake for RHOA signaling and thereby controls cell proliferation, migration, and genome stability.


Autophagy | 2015

Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux.

Sandy Giuliano; Yann Cormerais; Maeva Dufies; Renaud Grépin; Pascal Colosetti; Amine Belaid; Julien Parola; Anthony Martin; Sandra Lacas-Gervais; Nathalie M. Mazure; Rachid Benhida; Patrick Auberger; Baharia Mograbi; Gilles Pagès

Metastatic renal cell carcinomas (mRCC) are highly vascularized tumors that are a paradigm for the treatment with antiangiogenesis drugs targeting the vascular endothelial growth factor (VEGF) pathway. The available drugs increase the time to progression but are not curative and the patients eventually relapse. In this study we have focused our attention on the molecular mechanisms leading to resistance to sunitinib, the first line treatment of mRCC. Because of the anarchic vascularization of tumors the core of mRCC tumors receives only suboptimal concentrations of the drug. To mimic this in vivo situation, which is encountered in a neoadjuvant setting, we exposed sunitinib-sensitive mRCC cells to concentrations of sunitinib below the concentration of the drug that gives 50% inhibition of cell proliferation (IC50). At these concentrations, sunitinib accumulated in lysosomes, which downregulated the activity of the lysosomal protease CTSB (cathepsin B) and led to incomplete autophagic flux. Amino acid deprivation initiates autophagy enhanced sunitinib resistance through the amplification of autolysosome formation. Sunitinib stimulated the expression of ABCB1 (ATP-binding cassette, sub-family B [MDR/TAP], member 1), which participates in the accumulation of the drug in autolysosomes and favor its cellular efflux. Inhibition of this transporter by elacridar or the permeabilization of lysosome membranes with Leu-Leu-O-methyl (LLOM) resensitized mRCC cells that were resistant to concentrations of sunitinib superior to the IC50. Proteasome inhibitors also induced the death of resistant cells suggesting that the ubiquitin-proteasome system compensates inhibition of autophagy to maintain a cellular homeostasis. Based on our results we propose a new therapeutic approach combining sunitinib with molecules that prevent lysosomal accumulation or inhibit the proteasome.


Cancer Cell | 2017

mTORC1 Couples Nucleotide Synthesis to Nucleotide Demand Resulting in a Targetable Metabolic Vulnerability

Alexander J. Valvezan; Marc Turner; Amine Belaid; Hilaire C. Lam; Spencer K. Miller; Molly C. McNamara; Christian V. Baglini; Benjamin E. Housden; Norbert Perrimon; David J. Kwiatkowski; John M. Asara; Elizabeth P. Henske; Brendan D. Manning

The mechanistic target of rapamycin complex 1 (mTORC1) supports proliferation through parallel induction of key anabolic processes, including protein, lipid, and nucleotide synthesis. We hypothesized that these processes are coupled to maintain anabolic balance in cells with mTORC1 activation, a common event in human cancers. Loss of the tuberous sclerosis complex (TSC) tumor suppressors results in activation of mTORC1 and development of the tumor syndrome TSC. We find that pharmacological inhibitors of guanylate nucleotide synthesis have selective deleterious effects on TSC-deficient cells, including in mouse tumor models. This effect stems from replication stress and DNA damage caused by mTORC1-driven rRNA synthesis, which renders nucleotide pools limiting. These findings reveal a metabolic vulnerability downstream of mTORC1 triggered by anabolic imbalance.


Oncotarget | 2016

Differentiation inducing factor 3 mediates its anti-leukemic effect through ROS-dependent DRP1-mediated mitochondrial fission and induction of caspase-independent cell death

Alix Dubois; Clémence Ginet; Nathan Furstoss; Amine Belaid; Mohamed Amine Hamouda; Wedjene El Manaa; Thomas Cluzeau; Sandrine Marchetti; Jean-Ehrland Ricci; Arnaud Jacquel; Frederic Luciano; Mohsine Driowya; Rachid Benhida; Patrick Auberger; Guillaume Robert

Differentiation-inducing factor (DIF) defines a group of chlorinated hexaphenones that orchestrate stalk-cell differentiation in the slime mold Dictyostelium discoideum (DD). DIF-1 and 3 have also been reported to have tumor inhibiting properties; however, the mechanisms that underlie the effects of these compounds remain poorly defined. Herein, we show that DIF-3 rapidly triggers Ca2+ release and a loss of mitochondrial membrane potential (MMP) in the absence of cytochrome c and Smac release and without caspase activation. Consistently with these findings, we also detected no evidence of apoptosis in cells treated with DIF-3 but instead found that this compound induced autophagy. In addition, DIF-3 promoted mitochondrial fission in K562 and HeLa cells, as assessed by electron and confocal microscopy analysis. Importantly, DIF-3 mediated the phosphorylation and redistribution of dynamin-related protein 1 (DRP1) from the cytoplasmic to the microsomal fraction of K562 cells. Pharmacological inhibition or siRNA silencing of DRP1 not only inhibited mitochondrial fission but also protected K562 cells from DIF-3-mediated cell death. Furthermore, DIF-3 potently inhibited the growth of imatinib-sensitive and imatinib-resistant K562 cells. It also inhibited tumor formation in athymic mice engrafted with an imatinib-resistant CML cell line. Finally, DIF-3 exhibited a clear selectivity toward CD34+ leukemic cells from CML patients, compared with CD34− cells. In conclusion, we show that the potent anti-leukemic effect of DIF-3 is mediated through the induction of mitochondrial fission and caspase-independent cell death. Our findings may have important therapeutic implications, especially in the treatment of tumors that exhibit defects in apoptosis regulation.


Current Cancer Drug Targets | 2015

Autophagy : Moving Benchside Promises to Patient Bedsides

Amine Belaid; Papa Diogop Ndiaye; Harilaos Filippakis; Jérémie Roux; Eric Rottinger; Yacine Graba; Patrick Brest; Paul Hofman; Baharia Mograbi

Survival rates of patients with metastatic or recurrent cancers have remained virtually unchanged during the past 30 years. This fact makes the need for new therapeutic options even more urgent. An attractive option would be to target autophagy, an essential quality control process that degrades toxic aggregates, damaged organelles, and signaling proteins, and acts as a tumor suppressor pathway of tumor initiation. Conversely, other fascinating observations suggest that autophagy supports cancer progression, relapse, metastasis, dormancy and resistance to therapy. This review provides an overview of the contradictory roles that autophagy plays in cancer initiation and progression and discusses the promises and challenges of current strategies that target autophagy for cancer therapy.


Scientific Reports | 2018

Vps34-mediated macropinocytosis in Tuberous Sclerosis Complex 2-deficient cells supports tumorigenesis

Harilaos Filippakis; Amine Belaid; Brian J. Siroky; Constance Wu; Nicola Alesi; Thomas Hougard; Julie Nijmeh; Hilaire C. Lam; Elizabeth P. Henske

Tuberous Sclerosis Complex (TSC), a rare genetic disorder with mechanistic target of rapamycin complex 1 (mTORC1) hyperactivation, is characterized by multi-organ hamartomatous benign tumors including brain, skin, kidney, and lung (Lymphangioleiomyomatosis). mTORC1 hyperactivation drives metabolic reprogramming including glucose and glutamine utilization, protein, nucleic acid and lipid synthesis. To investigate the mechanisms of exogenous nutrients uptake in Tsc2-deficient cells, we measured dextran uptake, a polysaccharide internalized via macropinocytosis. Tsc2-deficient cells showed a striking increase in dextran uptake (3-fold, p < 0.0001) relative to Tsc2-expressing cells, which was decreased (3-fold, p < 0.0001) with mTOR inhibitor, Torin1. Pharmacologic and genetic inhibition of the lipid kinase Vps34 markedly abrogated uptake of Dextran in Tsc2-deficient cells. Macropinocytosis was further increased in Tsc2-deficient cells that lack autophagic mechanisms, suggesting that autophagy inhibition leads to dependence on exogenous nutrient uptake in Tsc2-deficient cells. Treatment with a macropinocytosis inhibitor, ethylisopropylamiloride (EIPA), resulted in selective growth inhibition of Atg5-deficient, Tsc2-deficient cells (50%, p < 0.0001). Genetic inhibition of autophagy (Atg5−/− MEFs) sensitized cells with Tsc2 downregulation to the Vps34 inhibitor, SAR405, resulting in growth inhibition (75%, p < 0.0001). Finally, genetic downregulation of Vps34 inhibited tumor growth and increased tumor latency in an in vivo xenograft model of TSC. Our findings show that macropinocytosis is upregulated with Tsc2-deficiency via a Vps34-dependent mechanism to support their anabolic state. The dependence of Tsc2-deficient cells on exogenous nutrients may provide novel approaches for the treatment of TSC.

Collaboration


Dive into the Amine Belaid's collaboration.

Top Co-Authors

Avatar

Baharia Mograbi

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Abderrahman Chargui

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Michel Tauc

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marius Ilie

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Paul Hofman

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Georges F. Carle

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Isabelle Rubera

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Papa Diogop Ndiaye

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Harilaos Filippakis

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge