Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amir A. Zeki is active.

Publication


Featured researches published by Amir A. Zeki.


Journal of Allergy | 2011

The Asthma-COPD Overlap Syndrome: A Common Clinical Problem in the Elderly

Amir A. Zeki; Michael Schivo; Andrew N Chan; Timothy E. Albertson; Samuel Louie

Many patients with breathlessness and chronic obstructive lung disease are diagnosed with either asthma, COPD, or—frequently—mixed disease. More commonly, patients with uncharacterized breathlessness are treated with therapies that target asthma and COPD rather than one of these diseases. This common practice represents the difficulty in distinguishing these disorders clinically, particularly in patients with a history that does not easily differentiate asthma from COPD. A common clinical scenario is an older former smoker with partially reversible or fixed airflow obstruction and evidence of atopy, demonstrating “overlap” features of asthma and COPD. We stress that asthma-COPD overlap syndrome becomes more prevalent with advancing age as patients respond less favorably to guideline-recommended drug therapy. We review the similarities and differences in clinical characteristics between these disorders, and their physiologic and inflammatory profiles within the context of the aging patient. We underscore the difficulties in differentiating asthma from COPD in current or former smokers, share our institutional experience with overlap syndrome, and highlight the need for new research to better characterize and investigate this important clinical phenotype.


American Journal of Respiratory and Critical Care Medicine | 2009

Simvastatin Inhibits Airway Hyperreactivity: Implications for the Mevalonate Pathway and Beyond

Amir A. Zeki; Lisa M. Franzi; Nicholas J. Kenyon

RATIONALE Statin use has been linked to improved lung health in asthma and chronic obstructive pulmonary disease. We hypothesize that statins inhibit allergic airway inflammation and reduce airway hyperreactivity via a mevalonate-dependent mechanism. OBJECTIVES To determine whether simvastatin attenuates airway inflammation and improves lung physiology by mevalonate pathway inhibition. METHODS BALB/c mice were sensitized to ovalbumin over 4 weeks and exposed to 1% ovalbumin aerosol over 2 weeks. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) was injected intraperitoneally before each ovalbumin exposure. MEASUREMENTS AND MAIN RESULTS Simvastatin reduced total lung lavage leukocytes, eosinophils, and macrophages (P < 0.05) in the ovalbumin-exposed mice. Cotreatment with mevalonate, in addition to simvastatin, reversed the antiinflammatory effects seen with simvastatin alone (P < 0.05). Lung lavage IL-4, IL-13, and tumor necrosis factor-alpha levels were all reduced by treatment with simvastatin (P < 0.05). Simvastatin treatment before methacholine bronchial challenge increased lung compliance and reduced airway hyperreactivity (P = 0.0001). CONCLUSIONS Simvastatin attenuates allergic airway inflammation, inhibits key helper T cell type 1 and 2 chemokines, and improves lung physiology in a mouse model of asthma. The mevalonate pathway appears to modulate allergic airway inflammation, while the beneficial effects of simvastatin on lung compliance and airway hyperreactivity may be independent of the mevalonate pathway. Simvastatin and similar agents that modulate the mevalonate pathway may prove to be treatments for inflammatory airway diseases, such as asthma.


Expert Review of Clinical Pharmacology | 2013

The asthma-chronic obstructive pulmonary disease overlap syndrome: pharmacotherapeutic considerations

Samuel Louie; Amir A. Zeki; Michael Schivo; Andrew L. Chan; Ken Y. Yoneda; Mark Avdalovic; Brian M. Morrissey; Timothy E. Albertson

Asthma–chronic obstructive pulmonary disease (COPD) overlap syndrome (ACOS) is a commonly encountered yet loosely defined clinical entity. ACOS accounts for approximately 15–25% of the obstructive airway diseases and patients experience worse outcomes compared with asthma or COPD alone. Patients with ACOS have the combined risk factors of smoking and atopy, are generally younger than patients with COPD and experience acute exacerbations with higher frequency and greater severity than lone COPD. Pharmacotherapeutic considerations require an integrated approach, first to identify the relevant clinical phenotype(s), then to determine the best available therapy. The authors discuss the array of existing and emerging classes of drugs that could benefit those with ACOS and share their therapeutic approach. A consensus international definition of ACOS is needed to design prospective, randomized clinical trials to evaluate specific drug interventions on important outcomes such as lung function, acute exacerbations, quality of life and mortality.


Translational Research | 2010

Simvastatin Inhibits Goblet Cell Hyperplasia and Lung Arginase in a Mouse Model of Allergic Asthma: A Novel Treatment for Airway Remodeling?

Amir A. Zeki; Jennifer M. Bratt; Michelle Rabowsky; Nicholas J. Kenyon

Airway remodeling in asthma contributes to airway hyperreactivity, loss of lung function, and persistent symptoms. Current therapies do not adequately treat the structural airway changes associated with asthma. The statins are cholesterol-lowering drugs that inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase, which is the rate-limiting step of cholesterol biosynthesis in the mevalonate (MA) pathway. These drugs have been associated with improved respiratory health, and ongoing clinical trials are testing their therapeutic potential in asthma. We hypothesized that simvastatin treatment of ovalbumin (OVA)-exposed mice would attenuate early features of airway remodeling by a mevalonate-dependent mechanism. BALB/c mice initially were sensitized to OVA and then exposed to 1% OVA aerosol for 2 weeks after sensitization for 6 exposures. Simvastatin (40 mg/kg) or simvastatin plus MA (20 mg/kg) were injected intraperitoneally before each OVA exposure. Treatment with simvastatin attenuated goblet cell hyperplasia, arginase-1 protein expression, and total arginase enzyme activity, but it did not alter airway hydroxyproline content or transforming growth factor-β1. Inhibition of goblet cell hyperplasia by simvastatin was mevalonate-dependent. No appreciable changes to airway smooth muscle cells were observed in any control or treatment groups. In conclusion, in an acute mouse model of allergic asthma, simvastatin inhibited early hallmarks of airway remodeling, which are indicators that can lead to airway thickening and fibrosis. Statins are potentially novel treatments for airway remodeling in asthma. Additional studies using subchronic or chronic allergen exposure models are needed to extend these initial findings.


Journal of Autoimmunity | 2010

Geoepidemiology of COPD and idiopathic pulmonary fibrosis

Amir A. Zeki; Michael Schivo; Andrew L. Chan; Kimberly A. Hardin; Nicholas J. Kenyon; Timothy E. Albertson; Grace L. Rosenquist; Samuel Louie

Progress in improving patient outcomes and advancing therapeutics in chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) is hampered by phenotypic heterogeneity and variable responsiveness to clinical interventions that are not fully explained by currently held disease paradigms for COPD and IPF. Although these chronic lung diseases differ in their geoepidemiology and immunopathogenesis, emerging evidence suggest that organ-specific autoimmunity may underlie subphenotypes of COPD and IPF. In particular, the links to tobacco smoking, diet, gender, and environment are explored in this review. We also highlight potential mechanisms that could guide future investigations in both laboratory and clinical settings. A paradigm shift is needed in how we think about COPD and IPF, based on geoepidemiology and a broader understanding of disease pathogenesis that may ultimately lead to new therapies and improved patient outcomes.


Respiratory Research | 2012

Differential effects of simvastatin on IL-13-induced cytokine gene expression in primary mouse tracheal epithelial cells.

Amir A. Zeki; Phil Thai; Nicholas J. Kenyon; Reen Wu

BackgroundAsthma causes significant morbidity worldwide in adults and children alike, and incurs large healthcare costs. The statin drugs, which treat hyperlipidemia and cardiovascular diseases, have pleiotropic effects beyond lowering cholesterol, including immunomodulatory, anti-inflammatory, and anti-fibrotic properties which may benefit lung health. Using an allergic mouse model of asthma, we previously demonstrated a benefit of statins in reducing peribronchiolar eosinophilic inflammation, airway hyperreactivity, goblet cell hyperplasia, and lung IL-4 and IL-13 production.ObjectivesIn this study, we evaluated whether simvastatin inhibits IL-13-induced pro-inflammatory gene expression of asthma-related cytokines in well-differentiated primary mouse tracheal epithelial (MTE) cell cultures. We hypothesized that simvastatin reduces the expression of IL-13-inducible genes in MTE cells.MethodsWe harvested tracheal epithelial cells from naïve BALB/c mice, grew them under air-liquid interface (ALI) cell culture conditions, then assessed IL-13-induced gene expression in MTE cells using a quantitative real-time PCR mouse gene array kit.ResultsWe found that simvastatin had differential effects on IL-13-mediated gene expression (inhibited eotaxin-1; MCP-1,-2,-3; and osteopontin (SPP1), while it induced caspase-1 and CCL20 (MIP-3α)) in MTE cells. For other asthma-relevant genes such as TNF, IL-4, IL-10, CCL12 (MCP-5), CCL5 (RANTES), and CCR3, there were no significant IL-13-inducible or statin effects on gene expression.ConclusionsSimvastatin modulates the gene expression of selected IL-13-inducible pro-inflammatory cytokines and chemokines in primary mouse tracheal epithelial cells. The airway epithelium may be a viable target tissue for the statin drugs. Further research is needed to assess the mechanisms of how statins modulate epithelial gene expression.


BMJ Open | 2013

Statin use and asthma control in patients with severe asthma

Amir A. Zeki; Justin M. Oldham; Machelle D. Wilson; Olga M. Fortenko; Vishal Goyal; Ayan Patel; Nicholas J. Kenyon

Objectives We hypothesised that severe asthmatics taking a statin drug, in addition to inhaled corticosteroids/long-acting β-agonist inhaler therapy, would have better asthma symptom control and improved lung function compared to their controls. Study design A retrospective, cross-sectional study of 165 patients with severe asthma seen from 2001–2008. Hierarchical linear and logistic regression models were used for modelling fitting. Setting University of California, Davis Medical Center (Sacramento, California, USA). Academic, single-centre, severe asthma subspecialty clinic. Participants 612 screened, 223 eligible and 165 adult patients were included in the final study (N=165; 31 statin users and 134 non-users). Primary and secondary outcome measures The primary endpoint was asthma control as measured by the Asthma Control Test (ACT). The secondary endpoints included lung function, symptoms and the need for corticosteroid burst and peripheral eosinophil count. Results At baseline, statin users compared to non-users were older, had lower lung function (FEV1% predicted, FEV1, forced vital capacity and FEF25–75%) and had a higher prevalence of comorbid conditions. Statin use was associated with more aspirin and ipratropium inhaler use than in non-users. Patients in both groups were obese (body mass index ≥ 30). Statin users had better asthma symptom control compared to non-users (higher adjusted mean ACT score by 2.2±0.94 points, p<0.02). Median statin use was for 1 year. There were no statistically significant differences in lung function, corticosteroid or rescue bronchodilator use or peripheral eosinophilia between the two groups. Conclusions In our severe asthma referral population, statin users already taking inhaled controller therapy achieved better asthma control compared to non-users. The implications of this study is that patients with severe asthma could potentially benefit from added statin treatment. Because our study population was on average obese, the obese severe asthmatic may be a viable asthma subphenotype for further studies. Prospective randomised clinical trials evaluating the safety and efficacy of statins in severe asthma are warranted.


Allergy | 2016

Autophagy in airway diseases: a new frontier in human asthma?

Amir A. Zeki; Behzad Yeganeh; Nicholas J. Kenyon; Martin Post; Saeid Ghavami

The study of autophagy (‘self‐eating’), a fundamental cell fate pathway involved in physiological and pathological subcellular processes, opens a new frontier in the continuous search for novel therapies for human asthma. Asthma is a complex syndrome with different disease phenotypes. Autophagy plays a central role in cell physiology, energy and metabolism, and cell survival. Autophagys hallmark is the formation of double‐membrane autophagic autophagosomes, and this process is operational in airway epithelial and mesenchymal cells in asthma. Genetic associations between autophagy genes and asthma have been observed including single nucleotide polymorphisms in Atg5 which correlate with reduced lung function. Immune mechanisms important in asthma such as Th2 cells and eosinophils also manifest autophagy. Lastly, we address the role of autophagy in extracellular matrix deposition and fibrosis in asthmatic airways remodeling, a pathologic process still without effective therapy, and discuss potential pharmacologic inhibitors. We end by offering two opposing but plausible hypotheses as to how autophagy may be directly involved in airway fibrosis.


American Journal of Respiratory Cell and Molecular Biology | 2015

Soluble Epoxide Hydrolase Inhibitor Attenuates Inflammation and Airway Hyperresponsiveness in Mice

Jun Yang; Jennifer M. Bratt; Lisa M. Franzi; Jun Yan Liu; Guodong Zhang; Amir A. Zeki; Christoph F.A. Vogel; Keisha Williams; Hua Dong; Yanping Lin; Sung Hee Hwang; Nicholas J. Kenyon; Bruce D. Hammock

Control of airway inflammation is critical in asthma treatment. Soluble epoxide hydrolase (sEH) has recently been demonstrated as a novel therapeutic target for treating inflammation, including lung inflammation. We hypothesized that pharmacological inhibition of sEH can modulate the inflammatory response in a murine ovalbumin (OVA) model of asthma. BALB/c mice were sensitized and exposed to OVA over 6 weeks. A sEH inhibitor (sEHI) was administered for 2 weeks. Respiratory system compliance, resistance, and forced exhaled nitric oxide were measured. Lung lavage cell counts were performed, and selected cytokines and chemokines in the lung lavage fluid were measured. A LC/MS/MS method was used to measure 87 regulatory lipids mediators in plasma, lung tissue homogenates, and lung lavage fluid. The pharmacological inhibition of sEH increased concentrations of the antiinflammatory epoxy eicosatrienoic acids and simultaneously decreased the concentrations of the proinflammatory dihydroxyeicosatrienoic acids and dihydroxyoctadecenoic acids. All monitored inflammatory markers, including FeNO levels, and total cell and eosinophil numbers in the lung lavage of OVA-exposed mice were reduced by sEHI. The type 2 T helper cell (Th2) cytokines (IL-4, IL-5) and chemokines (Eotaxin and RANTES) were dramatically reduced after sEHI administration. Resistance and dynamic lung compliance were also improved by sEHI. We demonstrated that sEHI administration attenuates allergic airway inflammation and airway responsiveness in a murine model. sEHI may have potential as a novel therapeutic strategy for allergic asthma.


PLOS ONE | 2013

Self-Assembling Nanoparticles Containing Dexamethasone as a Novel Therapy in Allergic Airways Inflammation

Nicholas J. Kenyon; Jennifer M. Bratt; Joyce S. Lee; Juntao Luo; Lisa M. Franzi; Amir A. Zeki; Kit S. Lam

Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78±0.44×105 (n = 18) vs. 5.98±1.3×105 (n = 13), P<0.05) and eosinophils (1.09±0.28×105 (n = 18) vs. 2.94±0.6×105 (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43±1.2 (n = 11) vs. 8.56±2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1±3.6 (n = 8) vs. 28.8±8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma.

Collaboration


Dive into the Amir A. Zeki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Louie

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa M. Franzi

University of California

View shared research outputs
Top Co-Authors

Avatar

Timothy E. Albertson

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Schivo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Y. Yoneda

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge