Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amir Gahremanpour is active.

Publication


Featured researches published by Amir Gahremanpour.


Catheterization and Cardiovascular Interventions | 2011

A randomized, controlled study of autologous therapy with bone marrow-derived aldehyde dehydrogenase bright cells in patients with critical limb ischemia.

Emerson C. Perin; Guilherme V. Silva; Amir Gahremanpour; John Canales; Yi Zheng; Maria da Graça Cabreira-Hansen; Farrell O. Mendelsohn; Nicolas Chronos; Rebecca Haley; James T. Willerson; Brian H. Annex

Objectives: The safety and efficacy of direct intramuscular injections of aldehyde dehydrogenase bright (ALDHbr) cells isolated from autologous bone marrow mononuclear cells (ABMMNCs) and ABMMNCs were studied in patients with critical limb ischemia (CLI) who were not eligible for percutaneous or surgical revascularization. Background: Many CLI patients are not candidates for current revascularization procedures, and amputation rates are high in these patients. Cell therapy may be a viable option for CLI patients. Methods: Safety was the primary objective and was evaluated by occurrence of adverse events. Efficacy, the secondary objective, was evaluated by assessment of Rutherford category, ankle‐brachial index (ABI), transcutaneous partial pressure of oxygen (TcPO2), quality of life, and pain. Results: ALDHbr cells and ABMMNCs were successfully administered to all patients. No therapy‐related serious adverse events occurred. Patients treated with ALDHbr cells (n = 11) showed significant improvements in Rutherford category from baseline to 12 weeks (mean, 4.09 ± 0.30 to 3.46 ± 1.04; P = 0.05) and in ABI at 6 (mean, 0.22 ± 0.19 to 0.30 ± 0.24; P = 0.02), and 12 weeks (mean, 0.36 ± 0.18; P = 0.03) compared with baseline. Patients in the ABMMNC group (n = 10) showed no significant improvements at 6 or 12 weeks in Rutherford category but did show improvement in ABI from baseline to 12 weeks (0.38 ± 0.06 to 0.52 ± 0.16; P = 0.03). No significant changes from baseline were noted in ischemic ulcer grade or TcPO2 in either group. Conclusions: Administration of autologous ALDHbr cells appears to be safe and warrants further study in patients with CLI.


American Heart Journal | 2014

Rationale and Design for PACE: Patients with Intermittent Claudication Injected with ALDH Bright Cells

Emerson C. Perin; Michael P. Murphy; John P. Cooke; Lem Moyé; Timothy D. Henry; Judy Bettencourt; Amir Gahremanpour; Nicholas J. Leeper; R. David Anderson; William R. Hiatt; Joao A.C. Lima; Bharath Ambale Venkatesh; Shelly L. Sayre; Rachel W. Vojvodic; Doris A. Taylor; Ray F. Ebert; Alan T. Hirsch

Peripheral artery disease (PAD) is recognized as a public health issue because of its prevalence, functional limitations, and increased risk of systemic ischemic events. Current treatments for claudication, the primary symptom in patients with PAD, have limitations. Cells identified using cytosolic enzyme aldehyde dehydrogenase (ALDH) may benefit patients with severe PAD but has not been studied in patients with claudication. PACE is a randomized, double-blind, placebo-controlled clinical trial conducted by the Cardiovascular Cell Therapy Research Network to assess the safety and efficacy of autologous bone marrow-derived ALDH(br) cells delivered by direct intramuscular injections in 80 patients with symptom-limiting intermittent claudication. Eligible patients will have a significant stenosis or occlusion of infrainguinal arteries and a resting ankle-brachial index less than 0.90 and will be randomized 1:1 to cell or placebo treatment with a 1-year follow-up. The primary end points are the change in peak walking time and leg collateral arterial anatomy, calf muscle blood flow, and tissue perfusion as determined by magnetic resonance imaging at 6 months compared with baseline. The latter 3 measurements are new physiologic lower extremity tissue perfusion and PAD imaging-based end points that may help to quantify the biologic and mechanistic effects of cell therapy. This trial will collect important mechanistic and clinical information on the safety and efficacy of ALDH(br) cells in patients with claudication and provide valuable insight into the utility of advanced magnetic resonance imaging end points.


Circulation | 2017

Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease: The CCTRN PACE Trial (Patients with Intermittent Claudication Injected with ALDH Bright Cells)

Emerson C. Perin; Michael P. Murphy; Keith L. March; Roberto Bolli; John Loughran; Phillip C. Yang; Nicholas J. Leeper; Ronald L. Dalman; Jason Q. Alexander; Timothy D. Henry; Jay H. Traverse; Carl J. Pepine; R. David Anderson; Scott Berceli; James T. Willerson; Raja Muthupillai; Amir Gahremanpour; Ganesh Raveendran; Omaida Velasquez; Joshua M. Hare; Ivonne Hernandez Schulman; Vijaykumar S. Kasi; William R. Hiatt; Bharath Ambale-Venkatesh; Joao A.C. Lima; Doris A. Taylor; Micheline Resende; Adrian P. Gee; April G. Durett; Jeanette Bloom

Background: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute–sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. Methods: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. Results: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] −0.6 to 2.5; P=0.238), collateral count (0.9±0.6 arteries; 95% CI, −0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, −0.8 to 0.8; P=0.978), and capillary perfusion (−0.2±0.6%; 95% CI, −1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1–2.9; P=0.047) in participants with completely occluded femoral arteries. Conclusions: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01774097.Background: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute–sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. Methods: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. Results: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] −0.6 to 2.5; P =0.238), collateral count (0.9±0.6 arteries; 95% CI, −0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, −0.8 to 0.8; P =0.978), and capillary perfusion (−0.2±0.6%; 95% CI, −1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1–2.9; P =0.047) in participants with completely occluded femoral arteries. Conclusions: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. Clinical Trial Registration: URL: . Unique identifier: [NCT01774097][1]. # Clinical Perspective {#article-title-36} [1]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT01774097&atom=%2Fcirculationaha%2F135%2F15%2F1417.atom


Bioconjugate Chemistry | 2011

Synthesis and evaluation of an anti-MLC1 × anti-CD90 bispecific antibody for targeting and retaining bone-marrow-derived multipotent stromal cells in infarcted myocardium.

C. William Gundlach; Amy R. Caivano; Maria da Graça Cabreira-Hansen; Amir Gahremanpour; Wells S. Brown; Yi Zheng; Bradley W. McIntyre; James T. Willerson; Richard A. Dixon; Emerson C. Perin; Darren G. Woodside

A key issue regarding the use of stem cells in cardiovascular regenerative medicine is their retention in target tissues. Here, we have generated and assessed a bispecific antibody heterodimer designed to improve the retention of bone-marrow-derived multipotent stromal cells (BMMSC) in cardiac tissue damaged by myocardial infarction. The heterodimer comprises an anti-human CD90 monoclonal antibody (mAb) (clone 5E10) and an anti-myosin light chain 1 (MLC1) mAb (clone MLM508) covalently cross-linked by a bis-arylhydrazone. We modified the anti-CD90 antibody with a pegylated-4-formylbenzamide moiety to a molar substitution ratio (MSR) of 2.6 and the anti-MLC1 antibody with a 6-hydrazinonicotinamide moiety to a MSR of 0.9. The covalent modifications had no significant deleterious effect on mAb epitope binding. Furthermore, the binding of anti-CD90 antibody to BMMSCs did not prevent their differentiation into adipo-, chondro-, or osteogenic lineages. Modified antibodies were combined under mild conditions (room temperature, pH 6, 1 h) in the presence of a catalyst (aniline) to allow for rapid generation of the covalent bis-arylhydrazone, which was monitored at A(354). We evaluated epitope immunoreactivity for each mAb in the construct. Flow cytometry demonstrated binding of the bispecific construct to BMMSCs that was competed by free anti-CD90 mAb, verifying that modification and cross-linking were not detrimental to the anti-CD90 complementarity-determining region. Similarly, ELISA-based assays demonstrated bispecific antibody binding to plastic-immobilized recombinant MLC1. Excess anti-MLC1 mAb competed for bispecific antibody binding. Finally, the anti-CD90 × anti-MLC1 bispecific antibody construct induced BMMSC adhesion to plastic-immobilized MLC1 that was resistant to shear stress, as measured in parallel-plate flow chamber assays. We used mAbs that bind both human antigens and the respective pig homologues. Thus, the anti-CD90 × anti-MLC1 bispecific antibody may be used in large animal studies of acute myocardial infarction and may provide a starting point for clinical studies.


Xenotransplantation | 2013

Xenotransplantation of human unrestricted somatic stem cells in a pig model of acute myocardial infarction

Amir Gahremanpour; Deborah Vela; Yi Zheng; Guilherme V. Silva; William L. Fodor; Fred Baimbridge; Marlos R. Fernandes; L. Maximilian Buja; Emerson C. Perin

Stem cell therapy may help restore cardiac function after acute myocardial infarction (AMI), but the optimal therapeutic cell type has not been identified.


Circulation | 2017

Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease: The CCTRN Patients with Intermittent Claudication Injected with ALDH Bright Cells (PACE) Trial

Emerson C. Perin; Michael P. Murphy; Keith L. March; Roberto Bolli; John Loughran; Phillip C. Yang; Nicholas J. Leeper; Ronald L. Dalman; Jason Q. Alexander; Timothy D. Henry; Jay H. Traverse; Carl J. Pepine; R. David Anderson; Scott A. Berceli; James T. Willerson; Raja Muthupillai; Amir Gahremanpour; Ganesh Raveendran; Omaida C. Velazquez; Joshua M. Hare; Ivonne Hernandez Schulman; Vijaykumar S. Kasi; William R. Hiatt; Bharath Ambale-Venkatesh; Joao A.C. Lima; Doris A. Taylor; Micheline Resende; Adrian P. Gee; April G. Durett; Jeannette Bloom

Background: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute–sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. Methods: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. Results: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] −0.6 to 2.5; P=0.238), collateral count (0.9±0.6 arteries; 95% CI, −0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, −0.8 to 0.8; P=0.978), and capillary perfusion (−0.2±0.6%; 95% CI, −1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1–2.9; P=0.047) in participants with completely occluded femoral arteries. Conclusions: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01774097.Background: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute–sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. Methods: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. Results: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] −0.6 to 2.5; P =0.238), collateral count (0.9±0.6 arteries; 95% CI, −0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, −0.8 to 0.8; P =0.978), and capillary perfusion (−0.2±0.6%; 95% CI, −1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1–2.9; P =0.047) in participants with completely occluded femoral arteries. Conclusions: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. Clinical Trial Registration: URL: . Unique identifier: [NCT01774097][1]. # Clinical Perspective {#article-title-36} [1]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT01774097&atom=%2Fcirculationaha%2F135%2F15%2F1417.atom


Cardiovascular Pathology | 2015

Method for sectioning and sampling hearts for histologic evaluation after delivery of biological agents by transendocardial injection.

Deborah Vela; Amir Gahremanpour; L. Maximilian Buja

The use of transendocardial (TE) injection as a validated method for delivering therapeutic agents to the diseased heart is increasing. Of the catheter systems currently available, TE injections guided by electromechanical mapping are attractive due to their minimal use of fluoroscopy and three-dimensional reconstruction capabilities that allow precise targeting of injections. We propose a method of cardiac sampling that takes advantage of the spatial accuracy of this system. Our preclinical experience with this methodology has yielded encouraging results, allowing a thorough examination of the injected areas through limited sampling.


Texas Heart Institute Journal | 2016

Pacing on the T Wave: What Is the Cause?

Amir Gahremanpour; Yochai Birnbaum; Tracy Holt; Mohammad Saeed

Section Editors: Yochai Birnbaum, MD, Mohammad Saeed, MD, and James M. Wilson, MD From: Texas Heart Institute, Baylor St. Lukes Medical Center (Drs. Birnbaum, Gahremanpour, and Saeed), Houston, Texas 77030; Section of Cardiology, Department of Medicine (Dr. Birnbaum), Baylor College of Medicine, Houston, Texas 77030; and Boston Scientific Corporation (Mr. Holt), St. Paul, Minnesota 55112 To participate in a moderated discussion of this case, go to THIJournal.blogspot.com. Two weeks from the original posting date, the discussion will close, but the comments will remain online for reference.


Catheterization and Cardiovascular Interventions | 2015

Comparison of scanning electron microscopy and optical coherence tomography for imaging of coronary bifurcation stents

Guilherme V. Silva; Amir Gahremanpour; Guilherme F. Attizzani; Yi Zeng; Wei Wang; Hirosada Yamamoto; Tomoaki Kanaya; Marian K. Rippy; Hiram G. Bezerra; Marco A. Costa; Emerson C. Perin

Optical coherence tomography (OCT) is a new intracoronary imaging modality that has excellent resolution and image quality and has been used to image neointimal coverage after stent implantation. OCT has been compared to histologic, intravascular ultrasound, and scanning electron microscopy (SEM) studies. However, OCT has not been compared with SEM for imaging stent coverage over side branches.


Circulation | 2017

Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery DiseaseClinical Perspective: The CCTRN PACE Trial (Patients With Intermittent Claudication Injected With ALDH Bright Cells)

Emerson C. Perin; Michael P. Murphy; Keith L. March; Roberto Bolli; John Loughran; Phillip C. Yang; Nicholas J. Leeper; Ronald L. Dalman; Jason Q. Alexander; Timothy D. Henry; Jay H. Traverse; Carl J. Pepine; R. David Anderson; Scott A. Berceli; James T. Willerson; Raja Muthupillai; Amir Gahremanpour; Ganesh Raveendran; Omaida Velasquez; Joshua M. Hare; Ivonne Hernandez Schulman; Vijaykumar S. Kasi; William R. Hiatt; Bharath Ambale-Venkatesh; Joao A.C. Lima; Doris A. Taylor; Micheline Resende; Adrian P. Gee; April G. Durett; Jeanette Bloom

Background: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute–sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. Methods: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. Results: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] −0.6 to 2.5; P=0.238), collateral count (0.9±0.6 arteries; 95% CI, −0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, −0.8 to 0.8; P=0.978), and capillary perfusion (−0.2±0.6%; 95% CI, −1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1–2.9; P=0.047) in participants with completely occluded femoral arteries. Conclusions: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01774097.Background: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute–sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. Methods: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. Results: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] −0.6 to 2.5; P =0.238), collateral count (0.9±0.6 arteries; 95% CI, −0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, −0.8 to 0.8; P =0.978), and capillary perfusion (−0.2±0.6%; 95% CI, −1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1–2.9; P =0.047) in participants with completely occluded femoral arteries. Conclusions: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. Clinical Trial Registration: URL: . Unique identifier: [NCT01774097][1]. # Clinical Perspective {#article-title-36} [1]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT01774097&atom=%2Fcirculationaha%2F135%2F15%2F1417.atom

Collaboration


Dive into the Amir Gahremanpour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doris A. Taylor

The Texas Heart Institute

View shared research outputs
Top Co-Authors

Avatar

Jay H. Traverse

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. David Anderson

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

William R. Hiatt

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Joao A.C. Lima

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Adrian P. Gee

Center for Cell and Gene Therapy

View shared research outputs
Researchain Logo
Decentralizing Knowledge