Amir Hakami
Carleton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amir Hakami.
Environmental Health Perspectives | 2013
Amanda J. Pappin; Amir Hakami
Background: Decision making regarding air pollution can be better informed if air quality impacts are traced back to individual emission sources. Adjoint or backward sensitivity analysis is a modeling tool that can achieve this goal by allowing for quantification of how emissions from sources in different locations influence human health metrics. Objectives: We attributed short-term mortality (valuated as an overall “health benefit”) in Canada and the United States to anthropogenic nitrogen oxides (NOx) and volatile organic compound (VOC) emissions across North America. Methods: We integrated epidemiological data derived from Canadian and U.S. time-series studies with the adjoint of an air quality model and also estimated influences of anthropogenic emissions at each location on nationwide health benefits. Results: We found significant spatiotemporal variability in estimated health benefit influences of NOx and VOC emission reductions on Canada and U.S. mortality. The largest estimated influences on Canada (up to
Atmospheric Environment | 2002
Jerome Kuebler; Armistead G. Russell; Amir Hakami; A. Clappier; H. van den Bergh
250,000/day) were from emissions originating in the Quebec City–Windsor Corridor, where population centers are concentrated. Estimated influences on the United States tend to be widespread and more substantial owing to both larger emissions and larger populations. The health benefit influences calculated using 24-hr average ozone (O3) concentrations are lower in magnitude than estimates calculated using daily 1-hr maximum O3 concentrations. Conclusions: Source specificity of the adjoint approach provides valuable information for guiding air quality decision making. Adjoint results suggest that the health benefits of reducing NOx and VOC emissions are substantial and highly variable across North America.
Environmental Science & Technology | 2013
S. Morteza Mesbah; Amir Hakami; Stephan Schott
An episode selection procedure was developed and applied to select sets of days representing characteristic meteorological conditions leading to high ozone episodes over the Swiss Plateau. The selection procedure was applied to data extending from January 1991 through December 1998, and is comprised of two steps: First, days were classified according to observed air quality and meteorological characteristics using classification and regression trees analysis (CART). Second, the CART results were used in conjunction with observed air quality data to identify sets of days characteristic of those leading to elevated ozone. These sets of days were selected to optimise how well a limited number of days represented seasonal air quality, and that formed longer episodes for use in the air quality modelling. CART analysis was performed for three zones of the Swiss Plateau that have different air quality and meteorological characteristics. The results for two zones were used together in the episode selection procedure in order to identify days representative for the whole Plateau. Meteorological analysis for a third zone suggested that it would be strongly impacted by pollutants transported in from outside the country. One thousand and eight hundred optimisation runs were performed to minimise the likelihood that the set of days was a local optimum, increasing the robustness for use in air quality modelling analysis. Fifteen days, grouped in four episodes ranging from 3 to 5 days were selected along with their calculated representativeness (or weight) to recreate a seasonal metric. The variety of local as well as regional meteorological characteristics showed that the episode selection procedure chose days representing a diverse set of meteorological situations which are associated with elevated ozone. This set of episodes can now be used to test air quality strategies.
Environmental Science & Technology | 2015
Amanda J. Pappin; S. Morteza Mesbah; Amir Hakami; Stephan Schott
Despite substantial reductions in nitrogen oxide (NOx) emissions in the United States, the success of emission control programs in optimal ozone reduction is disputable because they do not consider the spatial and temporal differences in health and environmental damages caused by NOx emissions. This shortcoming in the current U.S. NOx control policy is explored, and various methodologies for identifying optimal NOx emission control strategies are evaluated. The proposed approach combines an optimization platform with an adjoint (or backward) sensitivity analysis model and is able to examine the environmental performance of the current cap-and-trade policy and two damage-based emissions-differentiated policies. Using the proposed methodology, a 2007 case study of 218 U.S. electricity generation units participating in the NOx trading program is examined. The results indicate that inclusion of damage information can significantly enhance public health performance of an economic instrument. The net benefit under the policy that minimizes the social cost (i.e., health costs plus abatement costs) is six times larger than that of an exchange rate cap-and-trade policy.
Environmental Science & Technology | 2013
Amanda J. Pappin; Amir Hakami
UNLABELLED A common measure used in air quality benefit-cost assessment is marginal benefit (MB), or the monetized societal benefit of reducing 1 ton of emissions. Traditional depictions of MB for criteria air pollutants are such that each additional ton of emission reduction incurs less benefit than the previous ton. Using adjoint sensitivity analysis in a state-of-the-art air quality model, we estimate MBs for NOx emitted from mobile and point sources, characterized based on the estimated ozone-related premature mortality in the U.S. POPULATION Our findings indicate that nation-wide emission reductions in the U.S. significantly increase NOx MBs for all sources, without exception. We estimate that MBs for NOx emitted from mobile sources increase by 1.5 and 2.5 times, on average, for 40% and 80% reductions in anthropogenic emissions across the U.S. Our results indicate a strictly concave damage function and compounding benefits of progressively lower levels of NOx emissions, providing economic incentive for higher levels of abatement than were previously advisible. These findings suggest that the traditional perception of a convex damage function and decreasing MB with abatement may not hold true for secondary pollutants such as O3.
Environmental Science & Technology | 2012
S. Morteza Mesbah; Amir Hakami; Stephan Schott
We establish linkages between sources of NOx emissions and two types of national ozone metrics in Canada and the U.S. using the adjoint of an air quality model. We define an attainment-based metric using probabilistic design values (PDVs) exceeding 65 ppb to represent polluted regions and define an exposure-based metric as the premature mortality count related to short-term ozone exposure, both in Canada and the U.S. Our results reveal differences in both temporally averaged and day-specific influences of NOx emission controls across source locations. We find NOx emission reductions in California and the eastern U.S. to be most effective for reducing attainment- and exposure-based metrics, amounting to a total reduction of 6500 ppb in PDVs and 613 deaths/season nationally from a 10% reduction in NOx emissions from those source locations. While source controls in the remainder of the western U.S. are beneficial at reducing nonattainment, these reductions are less influential on ozone mortality. We also find that while exposure-based metrics are sensitive to daily emission reductions, much of the reduction in PDVs arises from controlling emissions on only a fraction of simulation days. We further illustrate the dependency of adjoint estimates of emission influences on the choice of averaging period as a follow-up to previous work.
Environmental Science & Technology | 2015
Matthew D. Turner; Daven K. Henze; Amir Hakami; Shunliu Zhao; Jaroslav Resler; Gregory R. Carmichael; Charles O. Stanier; Jaemeen Baek; Adrian Sandu; Armistead G. Russell; Athanasios Nenes; Gill-Ran Jeong; Shannon L. Capps; Peter Percell; Robert W. Pinder; Sergey L. Napelenok; Jesse O. Bash; Tianfeng Chai
Cap-and-trade programs have proven to be effective instruments for achieving environmental goals while incurring minimum cost. The nature of the pollutant, however, affects the design of these programs. NO(x), an ozone precursor, is a nonuniformly mixed pollutant with a short atmospheric lifetime. NO(x) cap-and-trade programs in the U.S. are successful in reducing total NO(x) emissions but may result in suboptimal environmental performance because location-specific ozone formation potentials are neglected. In this paper, the current NO(x) cap-and-trade system is contrasted to a hypothetical NO(x) trading policy with sensitivity-based exchange rates. Location-specific exchange rates, calculated through adjoint sensitivity analysis, are combined with constrained optimization for prediction of NO(x) emissions trading behavior and post-trade ozone concentrations. The current and proposed policies are examined in a case study for 218 coal-fired power plants that participated in the NO(x) Budget Trading Program in 2007. We find that better environmental performance at negligibly higher system-wide abatement cost can be achieved through inclusion of emission exchange rates. Exposure-based exchange rates result in better environmental performance than those based on concentrations.
Environmental Research Letters | 2015
Matthew D. Turner; Daven K. Henze; Shannon L. Capps; Amir Hakami; Shunliu Zhao; Jaroslav Resler; Gregory R. Carmichael; Charles O. Stanier; Jaemeen Baek; Adrian Sandu; Armistead G. Russell; Athanasios Nenes; Robert W. Pinder; Sergey L. Napelenok; Jesse O. Bash; Peter Percell; Tianfeng Chai
Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, which provides source-receptor relationships at highly resolved sectoral, spatial, and temporal scales. While damage resulting from anthropogenic emissions of BC is strongly correlated with population and premature death, we found little correlation between damage and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damage resulting from anthropogenic BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. Overall, these results show the value of the high-resolution source attribution for determining the locations, seasons, and sectors for which BC emission controls have the most effective health benefits.
Environmental Research Letters | 2016
A J Pappin; Amir Hakami; P Blagden; M Nasari; M Szyszkowicz; Richard T. Burnett
Recent studies have shown that exposure to particulate black carbon (BC) has significant adverse health effects and may be more detrimental to human health than exposure to PM2.5 as a whole. Mobile source BC emission controls, mostly on diesel-burning vehicles, have successfully decreased mobile source BC emissions to less than half of what they were 30 years ago. Quantification of the benefits of previous emissions controls conveys the value of these regulatory actions and provides a method by which future control alternatives could be evaluated. In this study we use the adjoint of the Community Multiscale Air Quality (CMAQ) model to estimate highly-resolved spatial distributions of benefits related to emission reductions for six urban regions within the continental US. Emissions from outside each of the six chosen regions account for between 7% and 27% of the premature deaths attributed to exposure to BC within the region. While we estimate that nonroad mobile and onroad diesel emissions account for the largest number of premature deaths attributable to exposure to BC, onroad gasoline is shown to have more than double the benefit per unit emission relative to that of nonroad mobile and onroad diesel. Within the region encompassing New York City and Philadelphia, reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission relative to reductions to onroad diesel sectors, and provide similar benefits per unit emission to that of onroad gasoline emissions in the region. While onroad mobile emissions have been decreasing in the past 30 years and a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions.
Archive | 2014
S. Morteza Mesbah; Amir Hakami; Stephan Schott
Recent epidemiological evidence suggests that the logarithm of concentration is a better predictor of mortality risk from long-term exposure to ambient PM2.5 and NO2 than concentration itself. A log-concentration-response function (CRF) predicts a heightened excess risk per unit concentration at low levels of exposure that further increases as the air becomes less polluted. Using an adjoint air quality model, we estimate the public health benefits of reducing NO x emissions, on a per-ton and source-by-source basis. Our estimates of benefits-per-ton assume linear in concentration and log-concentration CRFs for NO2 and a CRF that is linear in concentration for O3. We apply risk coefficients estimated using the Canadian Census Health and Environment Cohort. We find that a log-concentration CRF for NO2 leads almost consistently to larger benefits-per-ton than a linear in concentration CRF (e.g.,