Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amir Orian is active.

Publication


Featured researches published by Amir Orian.


BioEssays | 2000

Ubiquitin‐mediated proteolysis: biological regulation via destruction

Aaron Ciechanover; Amir Orian; Alan L. Schwartz

The ubiquitin proteolytic system plays an important role in a broad array of basic cellular processes. Among these are regulation of cell cycle, modulation of the immune and inflammatory responses, control of signal transduction pathways, development and differentiation. These complex processes are controlled via specific degradation of a single or a subset of proteins. Degradation of a protein by the ubiquitin system involves two successive steps, conjugation of multiple moieties of ubiquitin and degradation of the tagged protein by the 26S proteasome. An important question concerns the identity of the mechanisms that underlie the high degree of specificity of the system. Substrate recognition is governed by a large family ubiquitin ligases that recognize the substrates, bind them and catalyze/facilitate their interaction with ubiquitin. BioEssays 22:442—451, 2000.


Nature Cell Biology | 2005

Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development

Savraj S. Grewal; Ling Li; Amir Orian; Robert N. Eisenman; Bruce A. Edgar

Regulating ribosome number is thought to control cellular growth. Synthesis of ribosomal RNA (rRNA) is a limiting step in ribosome biogenesis and rates of rRNA synthesis are generally altered depending on the growth status of a cell. Although studies in unicellular systems have addressed the mechanisms by which this occurs, few studies have applied a genetic approach to examine growth-dependent control of rRNA synthesis in metazoans. Here, we show that in Drosophila melanogaster Myc (dMyc) is a regulator of rRNA synthesis. Expression of dMyc is both necessary and sufficient to control rRNA synthesis and ribosome biogenesis during larval development. Stimulation of rRNA synthesis by dMyc is mediated through a rapid, coordinated increase in the levels of the Pol I transcriptional machinery. In addition, the growth effects of dMyc in larval wing imaginal discs require de novo rRNA synthesis. We suggest that during animal development, the control of rRNA synthesis and ribosome biogenesis is an essential Myc function.


Journal of Cellular Biochemistry | 2000

The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications

Aaron Ciechanover; Amir Orian; Alan L. Schwartz

Proteolysis via the ubiquitin system plays important roles in a variety of basic cellular processes. Among these are regulation of cell cycle and division, modulation of the immune and inflammatory responses, and development and differentiation. In all cases studied, these complex processes are mediated via degradation or processing of a single or a subset of specific proteins. Ubiquitin‐mediated degradation of a protein involves two discrete and successive steps: (1) conjugation of multiple moieties of ubiquitin to the protein, and (2) degradation of the conjugated protein by the 26S proteasome complex with the release of free and reutilizable ubiquitin. In a few cases, it has been reported that ubiquitination targets membrane‐anchored proteins to degradation in the lysosome/vacuole. An important yet largely unresolved problem involves the mechanisms that endow the system with the high degree specificity and selectivity toward its many substrates. These are determined by a large family of ubiquitin‐protein ligases that recognize different primary and/or secondary/post‐translational motifs in the different substrates and by a wide array of modifying enzymes, such as protein kinases, and ancillary proteins, such as molecular chaperones, that render them susceptible for recognition by the ligases via modification or association with protein substrates. With the broad spectrum of protein substrates and the complex enzymatic machinery involved in targeting them, it is not surprising that the system was recently implicated in the pathogenesis of several important diseases. In addition, genetic studies in animals underscore the role of the system in normal development. We briefly review the enzymatic cascade involved in ubiquitin‐mediated degradation, describe some of the structural motifs identified by the conjugating machinery, and summarize recent developments in the involvement of the system in the pathogenesis of selected disease states. J. Cell. Biochem. Suppl. 34:40–51, 2000.


Current Biology | 2004

A Nucleolar Isoform of the Fbw7 Ubiquitin Ligase Regulates c-Myc and Cell Size

Markus Welcker; Amir Orian; Jonathan A. Grim; Robert N. Eisenman; Bruce E. Clurman

The human tumor suppressor Fbw7/hCdc4 functions as a phosphoepitope-specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination of cyclin E , Notch , c-Jun and c-Myc . Fbw7 loss in cancer may thus have profound effects on the pathways that govern cell division, differentiation, apoptosis, and cell growth. Fbw7-inactivating mutations occur in human tumor cell lines and primary cancers , and Fbw7 loss in cultured cells causes genetic instability . In mice, deletion of Fbw7 leads to embryonic lethality associated with defective Notch and cyclin E regulation . The human Fbw7 locus encodes three protein isoforms (Fbw7alpha, Fbw7beta, and Fbw7gamma) . We find that these isoforms occupy discrete subcellular compartments and have identified cis-acting localization signals within each isoform. Surprisingly, the Fbw7gamma isoform is nucleolar, colocalizes with c-Myc when the proteasome is inhibited, and regulates nucleolar c-Myc accumulation. Moreover, we find that knockdown of Fbw7 increases cell size consistent with its ability to control c-Myc levels in the nucleolus. We suggest that interactions between c-Myc and Fbw7gamma within the nucleolus regulate c-Mycs growth-promoting function and that c-Myc activation is likely to be an important oncogenic consequence of Fbw7 loss in cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes

Sara S. Hook; Amir Orian; Shaun M. Cowley; Robert N. Eisenman

Histone deacetylases (HDACs) are thought to function as critical mediators of transcriptional repression. However, the physiological targets and posttranslational modifications of the class II HDACs are largely unknown. Here we show that the C terminus of HDAC 6 is both necessary and sufficient for specific association with polyubiquitin. This region contains a putative zinc finger but lacks significant similarity to other known ubiquitin binding domains. Thus, we have designated this region as a PAZ domain, for Polyubiquitin Associated Zinc finger. Although the PAZ domain possesses homology with the zinc finger of deubiquitinating enzymes, it is dispensable for the deubiquitinating activity we find associated with HDAC6 following immunopurification. We also show that both HDAC 5 and HDAC 6 are ubiquitinated in vitro and in vivo. However, both of these proteins are stable in vivo and do not appear to be targeted for rapid degradation by the proteasome. Thus, HDAC6 is linked to the ubiquitin system via ubiquitin conjugation, polyubiquitin binding, and copurification with deubiquitinating enzymes.


Molecular and Cellular Biology | 1995

Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes.

Ilana Stancovski; Hedva Gonen; Amir Orian; Alan L. Schwartz; Aaron Ciechanover

The transcription factor c-Fos is a short-lived cellular protein. The levels of the protein fluctuate significantly and abruptly during changing pathophysiological conditions. Thus, it is clear that degradation of the protein plays an important role in its tightly regulated activity. We examined the involvement of the ubiquitin pathway in c-Fos breakdown. Using a mutant cell line, ts20, that harbors a thermolabile ubiquitin-activating enzyme, E1, we demonstrate that impaired function of the ubiquitin system stabilizes c-Fos in vivo. In vitro, we reconstituted a cell-free system and demonstrated that the protein is multiply ubiquitinated. The adducts serve as essential intermediates for degradation by the 26S proteasome. We show that both conjugation and degradation are significantly stimulated by c-Jun, with which c-Fos forms the active heterodimeric transcriptional activator AP-1. Analysis of the enzymatic cascade involved in the conjugation process reveals that the ubiquitin-carrier protein E2-F1 and its human homolog UbcH5, which target the tumor suppressor p53 for degradation, are also involved in c-Fos recognition. The E2 enzyme acts along with a novel species of ubiquitin-protein ligase, E3. This enzyme is distinct from other known E3s, including E3 alpha/UBR1, E3 beta, and E6-AP. We have purified the novel enzyme approximately 350-fold and demonstrated that it is a homodimer with an apparent molecular mass of approximately 280 kDa. It contains a sulfhydryl group that is essential for its activity, presumably for anchoring activated ubiquitin as an intermediate thioester prior to its transfer to the substrate. Taken together, our in vivo and in vitro studies strongly suggest that c-Fos is degraded in the cell by the ubiquitin-proteasome proteolytic pathway in a process that requires a novel recognition enzyme.


Journal of Biological Chemistry | 1995

Ubiquitin-mediated Processing of NF-κB Transcriptional Activator Precursor p105 RECONSTITUTION OF A CELL-FREE SYSTEM AND IDENTIFICATION OF THE UBIQUITIN-CARRIER PROTEIN, E2, AND A NOVEL UBIQUITIN-PROTEIN LIGASE, E3, INVOLVED IN CONJUGATION

Amir Orian; Simon T. Whiteside; Alain Israël; Ilana Stancovski; Alan L. Schwartz; Aaron Ciechanover

In most cases, the transcriptional factor NF-κB is a heterodimer consisting of two subunits, p50 and p65, which are encoded by two distinct genes of the Rel family. p50 is translated as a precursor of 105 kDa. The C-terminal domain of the precursor is rapidly degraded, forming the mature p50 subunit consisted of the N-terminal region of the molecule. The mechanism of generation of p50 is not known. It has been suggested that the ubiquitin-proteasome system is involved in the process; however, the specific enzymes involved and the mechanism of limited proteolysis, in which half of the molecule is spared, have been obscure. Palombella and colleagues (Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T.(1994) Cell 78, 773-785) have shown that ubiquitin is required for the processing in a cell-free system of a truncated, artificially constructed, 60-kDa precursor. They have also shown that proteasome inhibitors block the processing both in vitro and in vivo. In this study, we demonstrate reconstitution of a cell-free processing system and demonstrate directly that: (a) the ubiquitin-proteasome system is involved in processing of the intact p105 precursor, (b) conjugation of ubiquitin to the precursor is an essential intermediate step in the processing, (c) the recently discovered novel species of the ubiquitin-carrier protein, E2-F1, that is involved in the conjugation and degradation of p53, is also required for the limited processing of the p105 precursor, and (d) a novel, 320-kDa species of ubiquitin-protein ligase, is involved in the process. This novel enzyme is distinct from E6-AP, the p53-conjugating ligase, and from E3α, the “N-end rule” ligase.


PLOS Biology | 2004

Hairy transcriptional repression targets and cofactor recruitment in Drosophila.

Daniella Bianchi-Frias; Amir Orian; Jeffrey J. Delrow; Julio A. Vázquez; Alicia E. Rosales-Nieves; Susan M. Parkhurst

Members of the widely conserved Hairy/Enhancer of split family of basic Helix-Loop-Helix repressors are essential for proper Drosophila and vertebrate development and are misregulated in many cancers. While a major step forward in understanding the molecular mechanism(s) surrounding Hairy-mediated repression was made with the identification of Groucho, Drosophila C-terminal binding protein (dCtBP), and Drosophila silent information regulator 2 (dSir2) as Hairy transcriptional cofactors, the identity of Hairy target genes and the rules governing cofactor recruitment are relatively unknown. We have used the chromatin profiling method DamID to perform a global and systematic search for direct transcriptional targets for Drosophila Hairy and the genomic recruitment sites for three of its cofactors: Groucho, dCtBP, and dSir2. Each of the proteins was tethered to Escherichia coli DNA adenine methyltransferase, permitting methylation proximal to in vivo binding sites in both Drosophila Kc cells and early embryos. This approach identified 40 novel genomic targets for Hairy in Kc cells, as well as 155 loci recruiting Groucho, 107 loci recruiting dSir2, and wide genomic binding of dCtBP to 496 loci. We also adapted DamID profiling such that we could use tightly gated collections of embryos (2–6 h) and found 20 Hairy targets related to early embryogenesis. As expected of direct targets, all of the putative Hairy target genes tested show Hairy-dependent expression and have conserved consensus C-box–containing sequences that are directly bound by Hairy in vitro. The distribution of Hairy targets in both the Kc cell and embryo DamID experiments corresponds to Hairy binding sites in vivo on polytene chromosomes. Similarly, the distributions of loci recruiting each of Hairys cofactors are detected as cofactor binding sites in vivo on polytene chromosomes. We have identified 59 putative transcriptional targets of Hairy. In addition to finding putative targets for Hairy in segmentation, we find groups of targets suggesting roles for Hairy in cell cycle, cell growth, and morphogenesis, processes that must be coordinately regulated with pattern formation. Examining the recruitment of Hairys three characterized cofactors to their putative target genes revealed that cofactor recruitment is context-dependent. While Groucho is frequently considered to be the primary Hairy cofactor, we find here that it is associated with only a minority of Hairy targets. The majority of Hairy targets are associated with the presence of a combination of dCtBP and dSir2. Thus, the DamID chromatin profiling technique provides a systematic means of identifying transcriptional target genes and of obtaining a global view of cofactor recruitment requirements during development.


The EMBO Journal | 2011

Degringolade, a SUMO‐targeted ubiquitin ligase, inhibits Hairy/Groucho‐mediated repression

Mona Abed; Kevin C. Barry; Dorit Kenyagin; Bella Koltun; Taryn M. Phippen; Jeffrey J. Delrow; Susan M. Parkhurst; Amir Orian

Transcriptional cofactors are essential for proper embryonic development. One such cofactor in Drosophila, Degringolade (Dgrn), encodes a RING finger/E3 ubiquitin ligase. Dgrn and its mammalian ortholog RNF4 are SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs bind to SUMOylated proteins via their SUMO interaction motif (SIM) domains and facilitate substrate ubiquitylation. In this study, we show that Dgrn is a negative regulator of the repressor Hairy and its corepressor Groucho (Gro/transducin‐like enhancer (TLE)) during embryonic segmentation and neurogenesis, as dgrn heterozygosity suppresses Hairy mutant phenotypes and embryonic lethality. Mechanistically Dgrn functions as a molecular selector: it targets Hairy for SUMO‐independent ubiquitylation that inhibits the recruitment of its corepressor Gro, without affecting the recruitment of its other cofactors or the stability of Hairy. Concomitantly, Dgrn specifically targets SUMOylated Gro for sequestration and antagonizes Gro functions in vivo. Our findings suggest that by targeting SUMOylated Gro, Dgrn serves as a molecular switch that regulates cofactor recruitment and function during development. As Gro/TLE proteins are conserved universal corepressors, this may be a general paradigm used to regulate the Gro/TLE corepressors in other developmental processes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A Myc–Groucho complex integrates EGF and Notch signaling to regulate neural development

Amir Orian; Jeffrey J. Delrow; Alicia E. Rosales Nieves; Mona Abed; David Metzger; Ze’ev Paroush; Robert N. Eisenman; Susan M. Parkhurst

Integration of patterning cues via transcriptional networks to coordinate gene expression is critical during morphogenesis and misregulated in cancer. Using DNA adenine methyltransferase (Dam)ID chromatin profiling, we identified a protein–protein interaction between the Drosophila Myc oncogene and the Groucho corepressor that regulates a subset of direct dMyc targets. Most of these shared targets affect fate or mitosis particularly during neurogenesis, suggesting the dMyc–Groucho complex may coordinate fate acquisition with mitotic capacity during development. We find an antagonistic relationship between dMyc and Groucho that mimics the antagonistic interactions found for EGF and Notch signaling: dMyc is required to specify neuronal fate and enhance neuroblast mitosis, whereas Groucho is required to maintain epithelial fate and inhibit mitosis. Our results suggest that the dMyc–Groucho complex defines a previously undescribed mechanism of Myc function and may serve as the transcriptional unit that integrates EGF and Notch inputs to regulate early neuronal development.

Collaboration


Dive into the Amir Orian's collaboration.

Top Co-Authors

Avatar

Mona Abed

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert N. Eisenman

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Aaron Ciechanover

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alan L. Schwartz

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Susan M. Parkhurst

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey J. Delrow

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliya Bitman-Lotan

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ilana Stancovski

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bruce E. Clurman

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge