Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amir Schajnovitz is active.

Publication


Featured researches published by Amir Schajnovitz.


Nature | 2016

Distinct bone marrow blood vessels differentially regulate haematopoiesis.

Tomer Itkin; Shiri Gur-Cohen; Joel A. Spencer; Amir Schajnovitz; Saravana K. Ramasamy; Anjali P. Kusumbe; Guy Ledergor; Yookyung Jung; Idan Milo; Michael G. Poulos; Alexander Kalinkovich; Aya Ludin; Orit Kollet; Guy Shakhar; Jason M. Butler; Shahin Rafii; Ralf H. Adams; David T. Scadden; Charles P. Lin; Tsvee Lapidot

Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.


Leukemia | 2011

Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells

Ayelet Dar; Amir Schajnovitz; Kfir Lapid; Alexander Kalinkovich; Tomer Itkin; Aya Ludin; Wei-Ming Kao; Michela Battista; Melania Tesio; Orit Kollet; Neta Netzer Cohen; Raanan Margalit; Eike C. Buss; Françoise Baleux; Shinya Oishi; Nobutaka Fujii; Andre Larochelle; Cynthia E. Dunbar; Hal E. Broxmeyer; Paul S. Frenette; Tsvee Lapidot

Steady-state egress of hematopoietic progenitor cells can be rapidly amplified by mobilizing agents such as AMD3100, the mechanism, however, is poorly understood. We report that AMD3100 increased the homeostatic release of the chemokine stromal cell derived factor-1 (SDF-1) to the circulation in mice and non-human primates. Neutralizing antibodies against CXCR4 or SDF-1 inhibited both steady state and AMD3100-induced SDF-1 release and reduced egress of murine progenitor cells over mature leukocytes. Intra-bone injection of biotinylated SDF-1 also enhanced release of this chemokine and murine progenitor cell mobilization. AMD3100 directly induced SDF-1 release from CXCR4+ human bone marrow osteoblasts and endothelial cells and activated uPA in a CXCR4/JNK-dependent manner. Additionally, ROS inhibition reduced AMD3100-induced SDF-1 release, activation of circulating uPA and mobilization of progenitor cells. Norepinephrine treatment, mimicking acute stress, rapidly increased SDF-1 release and progenitor cell mobilization, whereas β2-adrenergic antagonist inhibited both steady state and AMD3100-induced SDF-1 release and progenitor cell mobilization in mice. In conclusion, this study reveals that SDF-1 release from bone marrow stromal cells to the circulation emerges as a pivotal mechanism essential for steady-state egress and rapid mobilization of hematopoietic progenitor cells, but not mature leukocytes.


Blood | 2012

S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release

Karin Golan; Yaron Vagima; Aya Ludin; Tomer Itkin; Shiri Cohen-Gur; Alexander Kalinkovich; Orit Kollet; Chihwa Kim; Amir Schajnovitz; Kfir Lapid; Shoham Shivtiel; Andrew J. Morris; Mariusz Z. Ratajczak; Tsvee Lapidot

The mechanisms of hematopoietic progenitor cell egress and clinical mobilization are not fully understood. Herein, we report that in vivo desensitization of Sphingosine-1-phosphate (S1P) receptors by FTY720 as well as disruption of S1P gradient toward the blood, reduced steady state egress of immature progenitors and primitive Sca-1(+)/c-Kit(+)/Lin(-) (SKL) cells via inhibition of SDF-1 release. Administration of AMD3100 or G-CSF to mice with deficiencies in either S1P production or its receptor S1P(1), or pretreated with FTY720, also resulted in reduced stem and progenitor cell mobilization. Mice injected with AMD3100 or G-CSF demonstrated transient increased S1P levels in the blood mediated via mTOR signaling, as well as an elevated rate of immature c-Kit(+)/Lin(-) cells expressing surface S1P(1) in the bone marrow (BM). Importantly, we found that S1P induced SDF-1 secretion from BM stromal cells including Nestin(+) mesenchymal stem cells via reactive oxygen species (ROS) signaling. Moreover, elevated ROS production by hematopoietic progenitor cells is also regulated by S1P. Our findings reveal that the S1P/S1P(1) axis regulates progenitor cell egress and mobilization via activation of ROS signaling on both hematopoietic progenitors and BM stromal cells, and SDF-1 release. The dynamic cross-talk between S1P and SDF-1 integrates BM stromal cells and hematopoeitic progenitor cell motility.


Blood | 2011

Enhanced c-Met activity promotes G-CSF–induced mobilization of hematopoietic progenitor cells via ROS signaling

Melania Tesio; Karin Golan; Simona Corso; Silvia Giordano; Amir Schajnovitz; Yaron Vagima; Shoham Shivtiel; Alexander Kalinkovich; Luisa Caione; Loretta Gammaitoni; Elisa Laurenti; Eike C. Buss; Elias Shezen; Tomer Itkin; Orit Kollet; Isabelle Petit; Andreas Trumpp; James G. Christensen; Massimo Aglietta; Wanda Piacibello; Tsvee Lapidot

Mechanisms governing stress-induced hematopoietic progenitor cell mobilization are not fully deciphered. We report that during granulocyte colony-stimulating factor-induced mobilization c-Met expression and signaling are up-regulated on immature bone marrow progenitors. Interestingly, stromal cell-derived factor 1/CXC chemokine receptor-4 signaling induced hepatocyte growth factor production and c-Met activation. We found that c-Met inhibition reduced mobilization of both immature progenitors and the more primitive Sca-1(+)/c-Kit(+)/Lin(-) cells and interfered with their enhanced chemotactic migration to stromal cell-derived factor 1. c-Met activation resulted in cellular accumulation of reactive oxygen species by mammalian target of rapamycin inhibition of Forkhead Box, subclass O3a. Blockage of mammalian target of rapamycin inhibition or reactive oxygen species signaling impaired c-Met-mediated mobilization. Our data show dynamic c-Met expression and function in the bone marrow and show that enhanced c-Met signaling is crucial to facilitate stress-induced mobilization of progenitor cells as part of host defense and repair mechanisms.


Nature Immunology | 2012

Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow

Aya Ludin; Tomer Itkin; Shiri Gur-Cohen; Alexander Mildner; Elias Shezen; Karin Golan; Orit Kollet; Alexander Kalinkovich; Ziv Porat; Gabriele D'Uva; Amir Schajnovitz; Elena Voronov; David A Brenner; Ron N. Apte; Steffen Jung; Tsvee Lapidot

Hematopoietic stem and progenitor cells (HSPCs) are regulated by various bone marrow stromal cell types. Here we identified rare activated bone marrow monocytes and macrophages with high expression of α-smooth muscle actin (α-SMA) and the cyclooxygenase COX-2 that were adjacent to primitive HSPCs. These myeloid cells resisted radiation-induced cell death and further upregulated COX-2 expression under stress conditions. COX-2-derived prostaglandin E2 (PGE2) prevented HSPC exhaustion by limiting the production of reactive oxygen species (ROS) via inhibition of the kinase Akt and higher stromal-cell expression of the chemokine CXCL12, which is essential for stem-cell quiescence. Our study identifies a previously unknown subset of α-SMA+ activated monocytes and macrophages that maintain HSPCs and protect them from exhaustion during alarm situations.


Nature Immunology | 2011

CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions

Amir Schajnovitz; Tomer Itkin; Gabriele D'Uva; Alexander Kalinkovich; Karin Golan; Aya Ludin; Dror Cohen; Ziv Shulman; Abraham Avigdor; Arnon Nagler; Orit Kollet; Rony Seger; Tsvee Lapidot

The chemokine CXCL12 is essential for the function of hematopoietic stem and progenitor cells. Here we report that secretion of functional CXCL12 from human bone marrow stromal cells (BMSCs) was a cell contact–dependent event mediated by connexin-43 (Cx43) and Cx45 gap junctions. Inhibition of connexin gap junctions impaired the secretion of CXCL12 and homing of leukocytes to mouse bone marrow. Purified human CD34+ progenitor cells did not adhere to noncontacting BMSCs, which led to a much smaller pool of immature cells. Calcium conduction activated signaling by cAMP–protein kinase A (PKA) and induced CXCL12 secretion mediated by the GTPase RalA. Cx43 and Cx45 additionally controlled Cxcl12 transcription by regulating the nuclear localization of the transcription factor Sp1. We suggest that BMSCs form a dynamic syncytium via connexin gap junctions that regulates CXC12 secretion and the homeostasis of hematopoietic stem cells.


Journal of Experimental Medicine | 2008

CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules

Shoham Shivtiel; Orit Kollet; Kfir Lapid; Amir Schajnovitz; Polina Goichberg; Alexander Kalinkovich; Elias Shezen; Melania Tesio; Neta Netzer; Isabelle Petit; Amnon Sharir; Tsvee Lapidot

The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor κB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.


Blood | 2012

FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation

Tomer Itkin; Aya Ludin; Ben Gradus; Shiri Gur-Cohen; Alexander Kalinkovich; Amir Schajnovitz; Orit Kollet; Jonathan Canaani; Elias Shezen; Douglas J. Coffin; Grigori Enikolopov; Thorsten Berg; Wanda Piacibello; Eran Hornstein; Tsvee Lapidot

Cytokine-induced expansion of hematopoietic stem and progenitor cells (HSPCs) is not fully understood. In the present study, we show that whereas steady-state hematopoiesis is normal in basic fibroblast growth factor (FGF-2)-knockout mice, parathyroid hormone stimulation and myeloablative treatments failed to induce normal HSPC proliferation and recovery. In vivo FGF-2 treatment expanded stromal cells, including perivascular Nestin(+) supportive stromal cells, which may facilitate HSPC expansion by increasing SCF and reducing CXCL12 via mir-31 up-regulation. FGF-2 predominantly expanded a heterogeneous population of undifferentiated HSPCs, preserving and increasing durable short- and long-term repopulation potential. Mechanistically, these effects were mediated by c-Kit receptor activation, STAT5 phosphorylation, and reduction of reactive oxygen species levels. Mice harboring defective c-Kit signaling exhibited abrogated HSPC expansion in response to FGF-2 treatment, which was accompanied by elevated reactive oxygen species levels. The results of the present study reveal a novel mechanism underlying FGF-2-mediated in vivo expansion of both HSPCs and their supportive stromal cells, which may be used to improve stem cell engraftment after clinical transplantation.


Nature Biotechnology | 2016

Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin

Rahul Palchaudhuri; Borja Saez; Jonathan Hoggatt; Amir Schajnovitz; David B. Sykes; Tiffany Tate; Agnieszka Czechowicz; Youmna Kfoury; Fnu Ruchika; Derrick J. Rossi; Gregory L. Verdine; Michael K. Mansour; David T. Scadden

Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45–saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45–SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases.


Blood | 2014

Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning.

Borja Saez; Francesca Ferraro; Rushdia Z. Yusuf; Colleen Cook; Vionnie W.C. Yu; Ana Pardo-Saganta; Stephen M. Sykes; Rahul Palchaudhuri; Amir Schajnovitz; Sutada Lotinun; Stefania Lymperi; Simón Méndez-Ferrer; Raquel del Toro; Robyn Rouviere Day; Radovan Vasic; Sanket S. Acharya; Roland Baron; Charles P. Lin; Yu Yamaguchi; Amy J. Wagers; David T. Scadden

The glycosyltransferase gene, Ext1, is essential for heparan sulfate production. Induced deletion of Ext1 selectively in Mx1-expressing bone marrow (BM) stromal cells, a known population of skeletal stem/progenitor cells, in adult mice resulted in marked changes in hematopoietic stem and progenitor cell (HSPC) localization. HSPC egressed from BM to spleen after Ext1 deletion. This was associated with altered signaling in the stromal cells and with reduced vascular cell adhesion molecule 1 production by them. Further, pharmacologic inhibition of heparan sulfate mobilized qualitatively more potent and quantitatively more HSPC from the BM than granulocyte colony-stimulating factor alone, including in a setting of granulocyte colony-stimulating factor resistance. The reduced presence of endogenous HSPC after Ext1 deletion was associated with engraftment of transfused HSPC without any toxic conditioning of the host. Therefore, inhibiting heparan sulfate production may provide a means for avoiding the toxicities of radiation or chemotherapy in HSPC transplantation for nonmalignant conditions.

Collaboration


Dive into the Amir Schajnovitz's collaboration.

Top Co-Authors

Avatar

Alexander Kalinkovich

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Tsvee Lapidot

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Orit Kollet

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Tomer Itkin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Aya Ludin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Golan

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Melania Tesio

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Elias Shezen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge