Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amir T. Fathi is active.

Publication


Featured researches published by Amir T. Fathi.


Blood | 2017

Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia

Eytan M. Stein; Courtney D. DiNardo; Daniel A. Pollyea; Amir T. Fathi; Gail J. Roboz; Jessica K. Altman; Richard Stone; Daniel J. DeAngelo; Ross L. Levine; Ian W. Flinn; Hagop M. Kantarjian; Robert H. Collins; Manish R. Patel; Arthur E. Frankel; Anthony S. Stein; Mikkael A. Sekeres; Ronan Swords; Bruno C. Medeiros; Christophe Willekens; Paresh Vyas; Alessandra Tosolini; Qiang Xu; Robert Knight; Katharine E. Yen; Sam Agresta; Stéphane de Botton; Martin S. Tallman

Recurrent mutations in isocitrate dehydrogenase 2 (IDH2) occur in ∼12% of patients with acute myeloid leukemia (AML). Mutated IDH2 proteins neomorphically synthesize 2-hydroxyglutarate resulting in DNA and histone hypermethylation, which leads to blocked cellular differentiation. Enasidenib (AG-221/CC-90007) is a first-in-class, oral, selective inhibitor of mutant-IDH2 enzymes. This first-in-human phase 1/2 study assessed the maximum tolerated dose (MTD), pharmacokinetic and pharmacodynamic profiles, safety, and clinical activity of enasidenib in patients with mutant-IDH2 advanced myeloid malignancies. We assessed safety outcomes for all patients and clinical efficacy in the largest patient subgroup, those with relapsed or refractory AML, from the phase 1 dose-escalation and expansion phases of the study. In the dose-escalation phase, an MTD was not reached at doses ranging from 50 to 650 mg per day. Enasidenib 100 mg once daily was selected for the expansion phase on the basis of pharmacokinetic and pharmacodynamic profiles and demonstrated efficacy. Grade 3 to 4 enasidenib-related adverse events included indirect hyperbilirubinemia (12%) and IDH-inhibitor-associated differentiation syndrome (7%). Among patients with relapsed or refractory AML, overall response rate was 40.3%, with a median response duration of 5.8 months. Responses were associated with cellular differentiation and maturation, typically without evidence of aplasia. Median overall survival among relapsed/refractory patients was 9.3 months, and for the 34 patients (19.3%) who attained complete remission, overall survival was 19.7 months. Continuous daily enasidenib treatment was generally well tolerated and induced hematologic responses in patients for whom prior AML therapy had failed. Inducing differentiation of myeloblasts, not cytotoxicity, seems to drive the clinical efficacy of enasidenib. This trial was registered at www.clinicaltrials.gov as #NCT01915498.


Therapeutic advances in hematology | 2014

The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond

Seth A. Wander; Mark Levis; Amir T. Fathi

Acute myeloid leukemia remains associated with poor outcomes despite advances in our understanding of the complicated molecular events driving leukemogenesis and malignant progression. Those patients harboring mutations in the FLT3 receptor tyrosine kinase have a particularly poor prognosis; however, significant excitement has been generated by the emergence of a variety of targeted inhibitors capable of suppressing FLT3 signaling in vivo. Here we will review results from preclinical studies and early clinical trials evaluating both first- and second-generation FLT3 inhibitors. Early FLT3 inhibitors (including sunitinib, midostaurin, and lestaurtinib) demonstrated significant promise in preclinical models of FLT3 mutant AML. Unfortunately, many of these compounds failed to achieve robust and sustained FLT3 inhibition in early clinical trials, at best resulting in only transient decreases in peripheral blast counts. These results have prompted the development of second-generation FLT3 inhibitors, epitomized by the novel agent quizartinib. These second-generation inhibitors have demonstrated enhanced FLT3 specificity and have been generally well tolerated in early clinical trials. Several FLT3 inhibitors have reached phase III clinical trials, and a variety of phase I/II trials exploring a role for these novel compounds in conjunction with conventional chemotherapy or hematopoietic stem cell transplantation are ongoing. Finally, molecular insights provided by FLT3 inhibitors have shed light upon the variety of mechanisms underlying the acquisition of resistance and have provided a rationale supporting the use of combinatorial regimens with other emerging targeted therapies.


Blood | 2012

Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response

Amir T. Fathi; Hossein Sadrzadeh; Darrell R. Borger; Karen K. Ballen; Philip C. Amrein; Eyal C. Attar; Julia Foster; Meghan Burke; Hector U. Lopez; Matulis Cr; Edmonds Km; Anthony John Iafrate; Kimberly Straley; Katherine Yen; Samuel V. Agresta; David P. Schenkein; Hill C; Emadi A; Donna Neuberg; Richard Stone; Yi-Bin Chen

Mutations of genes encoding isocitrate dehydrogenase (IDH1 and IDH2) have been recently described in acute myeloid leukemia (AML). Serum and myeloblast samples from patients with IDH-mutant AML contain high levels of the metabolite 2-hydroxyglutarate (2-HG), a product of the altered IDH protein. In this prospective study, we sought to determine whether 2-HG can potentially serve as a noninvasive biomarker of disease burden through serial measurements in patients receiving conventional therapy for newly diagnosed AML. Our data demonstrate that serum, urine, marrow aspirate, and myeloblast 2-HG levels are significantly higher in IDH-mutant patients, with a correlation between baseline serum and urine 2-HG levels. Serum and urine 2-HG, along with IDH1/2-mutant allele burden in marrow, decreased with response to treatment. 2-HG decrease was more rapid with induction chemotherapy compared with DNA-methyltransferase inhibitor therapy. Our data suggest that serum or urine 2-HG may serve as noninvasive biomarkers of disease activity for IDH-mutant AML.


Advances in Hematology | 2012

Mutations in Epigenetic Modifiers in Myeloid Malignancies and the Prospect of Novel Epigenetic-Targeted Therapy

Amir T. Fathi; Omar Abdel-Wahab

In the recent years, the discovery of a series of mutations in patients with myeloid malignancies has provided insight into the pathogenesis of myelodysplastic syndromes (MDSs), myeloproliferative neoplasms (MPNs), and acute myeloid leukemia (AML). Among these alterations have been mutations in genes, such as IDH1/2, TET2, DNMT3A, and EZH2, which appear to affect DNA and/or histone lysine methylation. Large clinical correlative studies are beginning to decipher the clinical importance, prevalence, and potential prognostic significance of these mutations. Additionally, burgeoning insight into the role of epigenetics in the pathogenesis of myeloid malignancies has prompted increased interest in development of novel therapies which target DNA and histone posttranslational modifications. DNA demethylating agents have been demonstrated to be clinically active in a subset of patients with MDS and AML and are used extensively. However, newer, more specific agents which alter DNA and histone modification are under preclinical study and development and are likely to expand our therapeutic options for these diseases in the near future. Here, we review the current understanding of the clinical importance of these newly discovered mutations in AML and MDS patients. We also discuss exciting developments in DNA methyltransferase inhibitor strategies and the prospect of novel histone lysine methyltransferase inhibitors.


Experimental Hematology | 2014

Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations

Ashkan Emadi; Sung Ah Jun; Takashi Tsukamoto; Amir T. Fathi; Mark D. Minden; Chi V. Dang

The incidence of mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) in de novo acute myeloid leukemia (AML) is approximately 20%. These mutations result in distinct metabolic characteristics including dependency of cancer cells on glutamine as the main source for α-ketoglutarate, which is consumed by leukemia cells to produce a cancer-derived metabolite, 2-hydroxyglutarate. We sought to exploit this glutamine addiction therapeutically in mutant IDH primary AML cells from patients by measuring cell growth after exposure to a small molecule glutaminase inhibitor, BPTES. We found that BPTES only suppressed the growth of AML cells expressing mutant IDH compared with those expressing wild type IDH. This study lays the groundwork for strategies to target a specific subtype of AML metabolically with IDH mutations with a unique reprogramming of intermediary metabolism that culminates in glutamine dependency of cancer cells for survival.


British Journal of Haematology | 2016

Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission

Andrew M. Brunner; Shuli Li; Amir T. Fathi; Martha Wadleigh; Vincent T. Ho; Kerry Collier; Christine Connolly; Karen K. Ballen; Corey Cutler; Bimalangshu R. Dey; Areej El-Jawahri; Sarah Nikiforow; Steven L. McAfee; John Koreth; Daniel J. DeAngelo; Edwin P. Alyea; Joseph H. Antin; Thomas R. Spitzer; Richard Stone; Robert J. Soiffer; Yi-Bin Chen

We performed a retrospective study analysing the effect of sorafenib, an oral fms‐Like Tyrosine Kinase 3 (FLT3)/multikinase inhibitor, as post‐transplant maintenance in adult patients with FLT3‐internal tandem duplication (ITD) acute myeloid leukaemia (AML). We identified consecutive patients with FLT3‐ITD AML diagnosed between 2008 and 2014 who received haematopoietic cell transplantation (HCT) in first complete remission (CR1). Post‐HCT initiation of sorafenib (yes/no) was evaluated as a time‐varying covariate in the overall survival/progression‐free survival (OS/PFS) analysis and we performed a landmark analysis of controls alive without relapse at the median date of sorafenib initiation. We identified 26 sorafenib patients and 55 controls. Median follow‐up was 27·2 months post‐HCT for sorafenib survivors, and 38·4 months for controls (P = 0·021). The median time to initiating sorafenib was 68 days post‐HCT; 43 controls were alive without relapse at this cut‐off. Sorafenib patients had improved 2‐year OS in the d+68 landmark analysis (81% vs. 62%, P = 0·029). Sorafenib was associated with improved 2‐year PFS (82% vs. 53%, P = 0·0081) and lower 2‐year cumulative incidence of relapse (8·2% vs. 37·7%, P = 0·0077). In multivariate analysis, sorafenib significantly improved OS [Hazard ratio (HR) 0·26, P = 0·021] and PFS (HR 0·25, P = 0·016). There was no difference in 2‐year non‐relapse mortality (9·8% vs. 9·3%, P = 0·82) or 1‐year chronic graft‐versus‐host disease (55·5% vs. 37·2%, P = 0·28). These findings suggest potential benefit of post‐HCT sorafenib in FLT3‐ITD AML, and support further evaluation of post‐HCT FLT3 inhibition.


Oncologist | 2011

FLT3 Inhibition as Therapy in Acute Myeloid Leukemia: A Record of Trials and Tribulations

Amir T. Fathi; Bruce A. Chabner

Acute myeloid leukemia (AML) is a hematologic malignancy with a poor prognosis. Approximately one quarter of the patients with AML also carry an internal tandem duplication (ITD) mutation in the gene encoding FMS-like tyrosine kinase 3 (FLT3), which has a significantly deleterious impact on prognosis. The ITD mutation renders FLT3 constitutively active and leads to uncontrolled proliferation of the leukemic blast. Over the course of the last decade, a variety of compounds have been developed in preclinical and clinical studies as potent inhibitors of FLT3. Many of the earlier agents under investigation, such as lestaurtinib, midostaurin, and sunitinib, were initially developed as inhibitors of other tyrosine kinases and as targeted therapies in a variety of malignancies. These compounds have been demonstrated to have some efficacy in clinical trials of AML, mainly manifesting as transient decreases in circulating blasts correlating with effective in vivo suppression of the FLT3 target. Nevertheless, the cumbersome pharmacokinetics of some compounds and the suboptimal specificity and potency of others have limited their therapeutic efficacy. In the last few years, newer, more potent and specific agents have been under investigation, with the leading example being AC220. This agent has shown significant promise in early phases of clinical investigation, and is currently in more advanced clinical trials. Hope remains that FLT3 inhibition will be become an effective therapeutic adjunct to our current treatment approach to AML.


Current Opinion in Hematology | 2011

FLT3 inhibitors: A Story of the Old and the New

Amir T. Fathi; Mark Levis

Purpose of reviewEver since the recognition that FMS-like tyrosine kinase 3 (FLT3) mutations exert a profound negative prognostic impact on the clinical outcome of patients with acute myeloid leukemia (AML), researchers have sought to find effective small-molecule inhibitors of this receptor tyrosine kinase. This review will attempt to provide a survey of the FLT3 inhibitors currently under investigation and provide a discussion on their current status in clinical trials. Recent findingsOver the past 10 years, a number of different compounds have been studied in vitro and clinically as FLT3 inhibitors. The first inhibitors studied were hampered by cumbersome pharmacokinetics and a general lack of potency. However, some agents have shown promise in clinical trials with transient responses in AML. Newer compounds, such as AC220, have demonstrated profound selectivity and potency against the FLT3 target, and are currently being investigated in clinical trials. SummaryClinical trials have so far demonstrated that inhibitors of FLT3 do have clinical activity in patients with FLT3-mutant AML, although this activity is often transient and correlates with effective in-vivo suppression of the FLT3 target. As newer, more potent agents are now entering advanced clinical trials, opportunities will emerge for real progress against this grim disease.


Cancer Treatment Reviews | 2010

Exploiting cellular pathways to develop new treatment strategies for AML

Amir T. Fathi; Steven Grant; Judith E. Karp

The standard approaches to the treatment of acute myeloid leukemia (AML) have been predominantly based on cytarabine and anthracyclines. Yet, the outcomes associated with AML continue to be poor, especially for those patients who are older or carry higher-risk disease. In recent years, extensive research has led to the development and study of novel agents which target AML by diverse and varied mechanisms. Among these are targeted therapeutics such as kinase inhibitors and oligonucleotide constructs. These aim to suppress the production or activity of proteins, such as FLT3 and BCL2, among others, and thus disrupt related signaling cascades essential for leukemogenesis and proliferation. In addition, other agents like flavopiridol appear to target the myeloid blast by various mechanisms including suppression of cyclin-dependent kinases and interference with nucleotide synthesis. Another class of novel therapies includes inhibitors of histone deacetylase, which cause growth arrest and apoptosis through histone acetylation and resultant conformational changes. Clinical trials are now studying these and other agents alone and in combination with traditional cytotoxic therapies, with some encouraging results. In this review, we aim to provide a summary of the preclinical and clinical investigations of selected promising agents currently under study.


Leukemia Research | 2012

A potential therapeutic target for FLT3-ITD AML: PIM1 Kinase

Amir T. Fathi; Omotayo Arowojolu; Ian Swinnen; Takashi Sato; Trivikram Rajkhowa; Donald M. Small; Fredrik P. Marmsater; John E. Robinson; Stefan David Gross; Matthew Martinson; Shelley Allen; Nicholas C. Kallan; Mark Levis

Patients with acute myeloid leukemia (AML) and a FLT3 internal tandem duplication (ITD) mutation have a poor prognosis, and FLT3 inhibitors are now under clinical investigation. PIM1, a serine/threonine kinase, is up-regulated in FLT3-ITD AML and may be involved in FLT3-mediated leukemogenesis. We employed a PIM1 inhibitor, AR00459339 (Array Biopharma Inc.), to investigate the effect of PIM1 inhibition in FLT3-mutant AML. Like FLT3 inhibitors, AR00459339 was preferentially cytotoxic to FLT3-ITD cells, as demonstrated in the MV4-11, Molm-14, and TF/ITD cell lines, as well as 12 FLT3-ITD primary samples. Unlike FLT3 inhibitors, AR00459339 did not suppress phosphorylation of FLT3, but did promote the de-phosphorylation of downstream FLT3 targets, STAT5, AKT, and BAD. Combining AR00459339 with a FLT3 inhibitor resulted in additive to mildly synergistic cytotoxic effects. AR00459339 was cytotoxic to FLT3-ITD samples from patients with secondary resistance to FLT3 inhibitors, suggesting a novel benefit to combining these agents. We conclude that PIM1 appears to be closely associated with FLT3 signaling, and that inhibition of PIM1 may hold therapeutic promise, either as monotherapy, or by overcoming resistance to FLT3 inhibitors.

Collaboration


Dive into the Amir T. Fathi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eytan M. Stein

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge