Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amit K. Guria is active.

Publication


Featured researches published by Amit K. Guria.


Chemical Communications | 2013

Influence of doping on semiconductor nanocrystals mediated charge transfer and photocatalytic organic reaction

Suresh Sarkar; Amit K. Guria; Narayan Pradhan

Doped and undoped ZnS semiconductor nanocrystals having different recombination pathways are explored to study the charge transfer reaction between the nanocrystals and the 4-nitrophenol/sodium borohydride redox couple.


Journal of Physical Chemistry Letters | 2013

The Redox Chemistry at the Interface for Retrieving and Brightening the Emission of Doped Semiconductor Nanocrystals.

Suresh Sarkar; Biplab K. Patra; Amit K. Guria; Narayan C. Pradhan

Photo-oxidation of semiconductor quantum dots is the prime concern during their processability, as it often induces nonradiative states and quenches the band edge excitonic emission. Nevertheless, similar effects have been observed for light emitting doped semiconductor nanocrystals, and the dopant emissions are also quenched due to the surface oxidation. This is more pronounced for selenide-based host semiconductors. To overcome this, we study the interface chemistry of Cu-doped and Mn-doped ZnSe nanocrystals and report here the retrieving and brightening of the emission from completely quenched months old doped nanocrystals. This has been obtained by treating the doped nanocrystals with appropriate organic thiol ligands which remove the surface oxidative states as well as resist further oxidation of the nanocrystals. Here, we investigate details of the redox chemistry at the interface and study related photophysics in retrieving the dopant emission.


Angewandte Chemie | 2017

Chemically Tailoring the Dopant Emission in Manganese-Doped CsPbCl3 Perovskite Nanocrystals

Samrat Das Adhikari; Sumit K. Dutta; Anirban Dutta; Amit K. Guria; Narayan Pradhan

Doping in perovskite nanocrystals adopts different mechanistic approach in comparison to widely established doping in chalcogenide quantum dots. The fast formation of perovskites makes the dopant insertions more competitive and challenging. Introducing alkylamine hydrochloride (RNH3 Cl) as a promoting reagent, precise controlled doping of MnII in CsPbCl3 perovskite nanocrystals is reported. Simply, by changing the amount of RNH3 Cl, the Mn incorporation and subsequent tuning in the excitonic as well as Mn d-d emission intensities are tailored. Investigations suggested that RNH3 Cl acted as the chlorinating source, controlled the size, and also helps in increasing the number of particles. This provided more opportunity for Mn ions to take part in reaction and occupied the appropriate lattice positions. Carrying out several reactions with varying reaction parameters, the doping conditions are optimized and the role of the promoting reagent for both doped and undoped systems are compared.


Journal of the American Chemical Society | 2015

Dopant-controlled selenization in Pd nanocrystals: the triggered Kirkendall effect.

Amit K. Guria; Gyanaranjan Prusty; Biplab K. Patra; Narayan Pradhan

Doping foreign impurities in host nanomaterials can induce new materials properties. In addition, doping can also influence the crystallization process and change the shape and/or phase of the host material. While dopant-induced changes in the properties of materials have been well studied, the concept of doping and its chemistry in the design of different nanostructures has rarely been investigated. In order to further understand the doping chemistry, this study investigated the dopant-controlled enhancement of the rate of the chemical reaction during the transformation from one doped material to another and the consequent effect on the shape evolution of the nanostructures. These are performed during the selenization of metal Pd(0), using Ag dopant. While the controlled process produced cuboidal Pd17Se15 from the quasi-spherical nanocrystals of Pd(0), on doping, the shape of Pd17Se15 transformed into hollow cubes. The rate was also enhanced by more than 30 times for the doped case in comparison to undoped Pd(0). Importantly, while for the undoped nanocrystals, the selenization approached in one direction, where for the doped particles, it occurred all around the nanocrystals and triggered the Kirkendall effect. Detailed investigations were conducted to elucidate the influence of the dopant on both the rate and directional approach of selenization in Pd(0), initiation of the fast diffusion of Pd, change in shape, and formation of the hollow structures. To our understanding, the role of dopants in controlling chemical processes is of fundamental importance, and this will undoubtedly broaden the scope of research on the chemistry of doping and crystal growth in solution.


Journal of Physical Chemistry Letters | 2014

Efficient Superionic Conductor Catalyst for Solid in Solution-Solid-Solid Growth of Heteronanowires.

Amit K. Guria; Suresh Sarkar; Biplab K. Patra; Narayan C. Pradhan

How efficient could a superionic conductor catalyst be? Beyond the traditionally used molecular precursors when the solution dispersed solid nanomaterials of variable size, shape and phase are introduced under certain reaction condition; the catalyst is found to digest all these structures in minutes irrespective of their phase and morphology, resulting unique heteronanowires. This has been inspected here by employing different ZnSe nanostructures as precursor for Ag2Se nanocrystal catalyst in its superionic conductor phase to obtain the Ag2Se-ZnSe heteronanowires. This dissolution and formation process of these nanostructures is correlated with the change in the reaction temperature profile, the phase of the catalyst, the shape/phase and surface ligands of the source nanostructures, and the possible mechanism of the unique heteronanowires growth has been investigated.


Angewandte Chemie | 2016

Modulated Binary–Ternary Dual Semiconductor Heterostructures

Gyanaranjan Prusty; Amit K. Guria; Indranil Mondal; Anirban Dutta; Ujjwal Pal; Narayan Pradhan

A generic modular synthetic strategy for the fabrication of a series of binary-ternary group II-VI and group I-III-VI coupled semiconductor nano-heterostructures is reported. Using Ag2 Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe-AgInSe2 , CdSe-AgGaSe2 , ZnSe-AgInSe2 , and ZnSe-AgGaSe2 . Among these, dispersive type-II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi-conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated.


Journal of Physical Chemistry Letters | 2015

Diffusion-Induced Shape Evolution in Multinary Semiconductor Nanostructures

Gyanaranjan Prusty; Amit K. Guria; Biplab K. Patra; Narayan C. Pradhan

The classical mechanism of crystal growth for architecting different nanomaterials in solution, although widely studied, is mainly restricted to binary semiconductor systems. However, this method is not applicable to multinary nanomaterials, which have multivalent cations possessing different reactivity under identical reaction conditions. Hence, the shape architectures of these nanostructures, which require a more sophisticated approach, remain relatively unexplored compared to those of binary semiconductors. Owing to the importance of the multinary materials, which are emerging as excellent green materials for both light harvesting and light emission, we investigated the diffusion-rate-controlled formation of ternary AgGaSe2 nanostructures and studied their heterostructures with noble metals. Controlling the changes in the rate of diffusion of the Ag ions resulted in the formation of tadpole-shaped AgGaSe2 ternary nanostructures. In situ study by collecting a sequential collection of samples has been carried out, and the conversion of amorphous Ga-selenide to crystalline AgGaSe2 has been monitored. In addition, heterostructures of tadpole AgGaSe2 with noble metals, Au and Pt, were designed, and their photocatalytic behaviors were studied.


Scientific Reports | 2015

Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism

Amit K. Guria; K. Dey; Suresh Sarkar; Biplab K. Patra; S. Giri; Narayan C. Pradhan

Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3.


Advanced Materials | 2016

Fixed Aspect Ratio Rod‐to‐Rod Conversion and Localized Surface Plasmon Resonance in Semiconducting I–V–VI Nanorods

Amit K. Guria; Gyanaranjan Prusty; Supriya Chacrabarty; Narayan Pradhan

Fixed-aspect-ratio rod-to-rod conversion of binary V-VI Sb2 Se3 to ternary I-V-VI Cu3 SbSe3 semiconducting nano structures is reported. Capturing the inter mediate products, the insight mechanisms of the ion-diffusion process for the structural transformation are established. The final ternary structure shows localized surface plasmonresonance-induced absorption in the near-infrared regions.


Angewandte Chemie | 2014

Chemical Sealing of Nanotubes: A Case Study on Sb2S3

Suresh Sarkar; Amit K. Guria; Biplab K. Patra; Narayan Pradhan

Implementing the solution chemistry, herein, we report the sealing of both ends of Sb2 S3 semiconductor nanotubes following the diffusion-controlled deposition of the sealing material, AgSbS2 . As a consequence, unique dumbbell-shaped hollow nanocapsules having a binary-ternary epitaxial heterojunction were formed in solution. Whereas these capsule-shaped nanostructures were obtained by the introduction of Ag(0) nanocrystals just after the formation of Sb2 S3 nanotubes, the addition of Ag(0) at the beginning of the process, prior to the formation of nanotubes, changed the growth pattern, and solid nanorods of Sb2 S3 were formed. The details of the chemistry involved in the formation of these nanostructures were investigated and are discussed herein.

Collaboration


Dive into the Amit K. Guria's collaboration.

Top Co-Authors

Avatar

Biplab K. Patra

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Narayan Pradhan

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Narayan C. Pradhan

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Suresh Sarkar

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Gyanaranjan Prusty

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Anirban Dutta

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Samrat Das Adhikari

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Sumit K. Dutta

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Indranil Mondal

Central Mechanical Engineering Research Institute

View shared research outputs
Top Co-Authors

Avatar

K. Dey

Indian Association for the Cultivation of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge