Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amit K. Patel is active.

Publication


Featured researches published by Amit K. Patel.


PLOS ONE | 2012

The Wnt/β-Catenin Pathway Cross-Talks with STAT3 Signaling to Regulate Survival of Retinal Pigment Epithelium Cells

Miryam A. Fragoso; Amit K. Patel; Rei E. I. Nakamura; Hyun Yi; Krishna Surapaneni; Abigail S. Hackam

Wnt/β-catenin signaling is an essential pathway that regulates numerous cellular processes, including cell survival. The molecular mechanisms contributing to pro-survival Wnt signaling are mostly unknown. Signal transducer and activator of transcription proteins (STATs) are a well-described family of transcription factors. STAT3 induces expression of anti-apoptotic genes in many tissues and is a downstream mediator of protective growth factors and cytokines. In this study, we investigated whether pro-survival Wnt signaling is mediated by STAT3. The Wnt3a ligand activated Wnt signaling in the retinal pigment epithelium ARPE-19 cell line and significantly increased the viability of cells exposed to oxidative stress. Furthermore, Wnt3a increased STAT3 activation and nuclear translocation, as measured by an antibody against phosphorylated STAT3. Reducing STAT3 levels with siRNA eliminated Wnt3a-dependent protection from oxidative stress. Together, these data demonstrate a previously unknown link between Wnt3a-mediated activation of STAT3 and cell survival, and indicate cross-talk between two important pro-survival signaling pathways.


PLOS ONE | 2012

Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

Hyun Yi; Amit K. Patel; Chhinder P. Sodhi; David J. Hackam; Abigail S. Hackam

Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways.


Molecular Immunology | 2013

Toll-like receptor 3 (TLR3) protects retinal pigmented epithelium (RPE) cells from oxidative stress through a STAT3-dependent mechanism.

Amit K. Patel; Abigail S. Hackam

Toll-like receptors (TLRs) are essential receptors of the innate immune system and are first responders for protection against bacterial and viral pathogens. Recently, several TLRs have also been implicated in regulating cell death and survival in non-pathogen injuries such as stroke and oxidative stress. Investigating the role of TLRs during central nervous system damage is an important focus of research that may reveal new mechanisms underlying the cellular response to injury and survival. Retinal pigmented epithelium (RPE) cells form an epithelial layer underneath the neural retina that maintains the function of photoreceptors and are the primary cell type affected in the retinal disease age-related macular degeneration (AMD). Predicted loss of function polymorphisms in the TLR3 gene are associated with protection from AMD but the role of TLR3 in regulating RPE survival during AMD-like injury, such as high oxidative stress, is not known. Therefore the purpose of this study is to evaluate the effect of TLR3 signaling on RPE viability during oxidative stress. We demonstrated that TLR3 activation in the presence of oxidative stress injury significantly increased RPE cell viability, in contrast to TLR3 reducing cell viability in the absence of cellular injury. Furthermore, we show signal transducer and activator of transcription 3 (STAT3) signaling as an essential mediator of TLR3-regulated protection of RPE cells. STAT3 signaling was increased by TLR3 activation and knockdown of STAT3 transcripts using siRNA abolished the protective effect of TLR3 during oxidative stress. Together, these results demonstrate a novel pro-survival role for TLR3 signaling within the RPE during injury. These findings support the concept that dysregulation of TLR3 activity may contribute to the development of AMD, suggesting that precise regulation of the TLR3 pathway during AMD-associated injury could be of therapeutic interest.


Molecular and Cellular Neuroscience | 2014

A novel protective role for the innate immunity Toll-Like Receptor 3 (TLR3) in the retina via Stat3.

Amit K. Patel; Abigail S. Hackam

The innate immune system and inflammatory pathways play key roles in numerous diseases of the central nervous system (CNS). Recent evidence indicates that innate immunity induces both pathogenesis and protection during neuronal injury. To test the possibility that the conflicting roles of innate immunity in the CNS depends on the cellular environment in which innate immunity is stimulated, we analyzed the effect of Toll-Like Receptor 3 (TLR3) activation on neuronal survival in the presence and absence of oxidative injury in a mouse model system. We demonstrated that activation of TLR3 by the double stranded RNA activator, Poly (I:C), during paraquat induced oxidative stress, significantly protected mouse photoreceptors, as measured by increased retinal structure, function, and improved visual acuity. In contrast, TLR3 activation without concurrent oxidative injury was neurotoxic. The neurotoxic and protective effects of Poly (I:C) stimulation were absent in TLR3 knockout animals, which indicates that protection by Poly (I:C) is dependent on the TLR3 signaling pathway. Furthermore, we identified the pro-survival transcription factor Stat3 as a necessary mechanism for protection. Knockdown of Stat3 using lentivirally delivered shRNA abolished the protective effects of TLR3 signaling in the retina during oxidative stress. Therefore, TLR3 activation in the context of oxidative stress triggers protective instead of pathogenic signaling, suggesting that TLR3 is a potential therapeutic target for neurodegeneration where oxidative stress is a significant contributor.


Experimental Neurology | 2015

Reduced photoreceptor death and improved retinal function during retinal degeneration in mice lacking innate immunity adaptor protein MyD88.

Sarah Syeda; Amit K. Patel; Tinthu Lee; Abigail S. Hackam

The injury inflammatory response mediated by the innate immune system is an important contributor to neurodegeneration in the central nervous system (CNS) and retina. A major branch of the innate immune system is regulated by the Toll-like receptors (TLRs), which are receptors for endogenous damage associated molecules released from injured cells as well as pathogen-derived molecules, and interleukin-1 receptors (IL-1R), which are activated by IL-1α, IL-1β and IL-18 cytokines. TLRs and IL-1R are expressed on immune and non-immune cell types and act as first responders to cell damage, which results in tissue repair, or inflammation and apoptosis. Both TLR and IL-1R require the adaptor protein myeloid differentiation primary response gene 88 (MyD88) for signaling. Although inflammation is implicated in neuronal death in the retina, the role of MyD88-dependent TLR and IL-1R signaling in retinal degeneration is unknown. Therefore, the purpose of this study was to investigate the role of MyD88-mediated signaling in neuronal degeneration in the retinal degeneration 1 (rd1) mouse model, which exhibits a phenotype of rapid photoreceptor death and inflammation. To generate rd1 mice lacking the MyD88 gene, rd1 were bred with MyD88 knockout mice (MyD88(-/-)) for several generations to produce rd1/MyD88(+/+) and rd1/MyD88(-/-) genotypes. Chemokine mRNA expression levels were analyzed by qRT-PCR, and recruitment of activated microglia was quantified by immunodetection of the IBA-1 protein. Retinal outer nuclear layer cell counts were performed to quantify photoreceptor degeneration, and retinal function was assessed using electroretinograms (ERG). Our results revealed that retinal expression of Ccl2, Ccl4, Ccl7 and Cxcl10 was reduced by 2 to 8-fold in rd1/MyD88(-/-) mice compared with rd1/MyD88(+/+) mice (p<0.05), which coincided with attenuated microglial activation, higher numbers of photoreceptors and higher retina responses to photopic and scotopic stimuli. At later ages, rd1/MyD88(-/-) had reduced chemokine expression and higher photopic responses but no change in microglial recruitment compared with rd1 mice with functional MyD88. In conclusion, lack of MyD88-mediated signaling increased photoreceptor survival and retina function in rd1 mice, which implicates MyD88-mediated innate immunity pathways as an important pathogenic factor during retinal degeneration.


Neuroscience | 2017

Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse.

Amit K. Patel; Kevin K. Park; Abigail S. Hackam

Adult mammalian CNS axons generally do not regenerate, creating an obstacle to effective repair and recovery after neuronal injury. The canonical Wnt/β-catenin signaling pathway is an essential signal transduction cascade that regulates axon growth and neurite extension in the developing mammalian embryo. In this study, we investigated whether a Wnt/β-catenin signaling activator could be repurposed to induce regeneration in the adult CNS after axonal injury. We used a retinal ganglion cell (RGC) axon crush injury model in a transgenic Wnt reporter mouse, and intravitreal injections were used to deliver Wnt3a or saline to the RGC cell bodies within the retina. Our findings demonstrated that Wnt3a induced Wnt signaling in RGCs and resulted in significant axonal regrowth past the lesion site when measured at two and four weeks post-injury. Furthermore, Wnt3a-injected eyes showed increased survival of RGCs and significantly higher pattern electroretinography (PERG) amplitudes compared to the control. Additionally, Wnt3a-induced axonal regeneration and RGC survival were associated with elevated activation of the transcription factor Stat3, and reducing expression of Stat3 using a conditional Stat3 knock-out mouse line led to diminished Wnt3a-dependent axonal regeneration and RGC survival. Therefore, these findings reveal a novel role for retinal Wnt signaling in axonal regrowth and RGC survival following axonal injury, which may lead to the development of novel therapies for axonal regeneration.


Nutrition | 2016

Protective effects of a grape-supplemented diet in a mouse model of retinal degeneration

Amit K. Patel; Ashley S. Davis; Maria Esperanza Rodriguez; Samantha Agron; Abigail S. Hackam

OBJECTIVE Retinal degenerations are a class of devastating blinding diseases that are characterized by photoreceptor dysfunction and death. In this study, we tested whether grape consumption, in the form of freeze-dried grape powder (FDGP), improves photoreceptor survival in a mouse model of retinal degeneration. METHODS Retinal degeneration was induced in mice by acute oxidative stress using subretinal injection of paraquat. The grape-supplemented diet was made by formulating base mouse chow with FDGP, corresponding to three daily human servings of grapes, and a control diet was formulated with equivalent sugar composition as FDGP (0.68% glucose-0.68% fructose mixture). Mice were placed on the diets at weaning for 5 wk before oxidative stress injury until analysis at 2 wk post-injection. Retinal function was measured using electroretinography, thickness of the photoreceptor layer was measured using optical coherence tomography, and rows of photoreceptor nuclei were counted on histologic sections. RESULTS In mice fed the control diet, oxidative stress significantly reduced photoreceptor layer thickness and photoreceptor numbers. In contrast, retinal thickness and photoreceptor numbers were not reduced by oxidative stress in mice on the grape-supplemented diet, indicating significantly higher photoreceptor survival after injury than mice on the control diet. Furthermore, mice on the grape diet showed preservation of retinal function after oxidative stress injury compared with mice on the control diet. CONCLUSIONS A diet supplemented with grapes rescued retinal structure and function in an oxidative stress-induced mouse model of retinal degeneration, which demonstrates the beneficial effect of grapes on photoreceptors.


Current Eye Research | 2016

Defining the Relationships Among Retinal Function, Layer Thickness and Visual Behavior During Oxidative Stress-Induced Retinal Degeneration.

Amit K. Patel; Elizabeth Akinsoji; Abigail S. Hackam

Abstract Purpose: The purpose of this study was to identify how changes in retinal structure and function correlate with visual deficits during increasing amounts of retinal degeneration. Materials and methods: Retinal degeneration was induced in adult mice by subretinal injections of paraquat (PQ) (0.2–1 mM). Retinal anatomy and photoreceptor layer thickness were quantified by histology and optical coherence tomography (OCT), retinal function was measured using electroretinography (ERG), and visual behavior were measured by optokinetic tracking, at 1 to 3 week post-injury. Results: Photoreceptor layer structure, function and visual behavior declined at a linear rate over time following PQ-induced degeneration, with the correlations between outcome measures being lowest at mild injury levels and increasing with injury severity. Overall reductions in visual acuity were highly correlated with declines in retinal thickness (r2 = 0.78) and function (r2 = 0.67) and retinal thickness correlated with photoreceptor function (r2 = 0.72). ERG a-wave scotopic amplitudes showed a stronger correspondence to retinal structure and visual behavior than b-waves. Conclusions: Measurements of photoreceptor loss at the structural and functional levels showed good correspondence with degeneration-associated changes in visual behavior after oxidative stress injury. The results provide new insight about the relative kinetics of measurements of retinal degeneration induced by oxidative stress, which could guide the choice of optimal outcome measurements for other retinal diseases.


Neuropharmacology | 2015

Activation of Wnt/β-catenin signaling in Muller glia protects photoreceptors in a mouse model of inherited retinal degeneration

Amit K. Patel; Krishna Surapaneni; Hyun Yi; Rei E. I. Nakamura; Sapir Karli; Sarah Syeda; Tinthu Lee; Abigail S. Hackam


Investigative Ophthalmology & Visual Science | 2012

The Wnt/beta-catenin Pathway Cross-talks with STAT3 Signaling to Regulate Survival of Retinal Pigment Epithelium Cells

Karen Alvarez-Delfin; Miryam A. Fragoso; Amit K. Patel; Rei Nakamura; Hyun Yi; Abigail S. Hackam

Collaboration


Dive into the Amit K. Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge