Amit Lerner
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amit Lerner.
The Journal of Experimental Biology | 2008
Amit Lerner; Nikolay Meltser; Nir Sapir; Carynelisa Erlick; Nadav Shashar; Meir Broza
SUMMARY Chironomids (Diptera: Chironomidae; non-biting midges) are known to be carriers of the Vibrio cholerae bacterium, responsible for the fatal cholera disease in humans. It was recently discovered that chironomid females choose their oviposition site by a visual cue. In this study, we test the hypothesis that this visual cue is the linear polarization of light reflected from the water surface. We conducted two multiple choice field experiments using egg traps with different light intensities and polarizations. With controlled illumination, a higher number of eggs was found under both high intensity and high polarization. Under natural illumination, no eggs were found in the unpolarized traps, and the egg number increased with the percentage polarization regardless of the light intensity. Field measurements showed that at sunset, when chironomids are active, the intensity of light reflected from their natural ponds decreases by 96%, while the percentage polarization remains stable and high at 60%. Furthermore, the percentage polarization is positively correlated with the total organic carbon (TOC) concentration in the water. Orthogonal alignment of the microvilli found in ommatidia from the ventral part of the female eye may provide the anatomical basis for polarization sensitivity. We conclude that the percentage polarization of reflected light is the cue by which chironomid females choose their oviposition site. It is a stable cue and can provide information on the amount of food available to the larvae in the water. Based on our results, we suggest that manipulating the polarization of reflected light is a viable way to control chironomid populations and mitigate cholera dispersion.
Philosophical Transactions of the Royal Society B | 2011
Amit Lerner; Shai Sabbah; Carynelisa Erlick; Nadav Shashar
Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Suns elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the lights polarization.
Philosophical Transactions of the Royal Society B | 2011
Nadav Shashar; Sönke Johnsen; Amit Lerner; Shai Sabbah; Chuan-Chin Chiao; Lydia M. Mäthger; Roger T. Hanlon
Polarization sensitivity is documented in a range of marine animals. The variety of tasks for which animals can use this sensitivity, and the range over which they do so, are confined by the visual systems of these animals and by the propagation of the polarization information in the aquatic environment. We examine the environmental physical constraints in an attempt to reveal the depth, range and other limitations to the use of polarization sensitivity by marine animals. In clear oceanic waters, navigation that is based on the polarization pattern of the sky appears to be limited to shallow waters, while solar-based navigation is possible down to 200–400 m. When combined with intensity difference, polarization sensitivity allows an increase in target detection range by 70–80% with an upper limit of 15 m for large-eyed animals. This distance will be significantly smaller for small animals, such as plankton, and in turbid waters. Polarization-contrast detection, which is relevant to object detection and communication, is strongly affected by water conditions and in clear waters its range limit may reach 15 m as well. We show that polarization sensitivity may also serve for target distance estimation, when examining point source bioluminescent objects in the photic mesopelagic depth range.
Oecologia | 2011
Amit Lerner; Nir Sapir; Carynelisa Erlick; Nikolay Meltser; Meir Broza; Nadav Shashar
Knowledge of density-dependent processes and how they are mediated by environmental factors is critically important for understanding population and community ecology of insects, as well as for mitigating harmful insect-borne diseases. Here, we tested whether the oviposition of chironomids (Diptera: Chironomidae; non-biting midges), known to carry the Cholera pathogen Vibrio cholerae, is density dependent and if it is mediated by habitat availability. We used two multiple choice experiments in habitat-limited and habitat-unlimited environments and performed isodar analysis on counts of egg batches after controlling the polarization of light reflected from the habitats, which is known to affect their attractiveness to ovipositing chironomids. We found that, when habitats are limited, egg batch isodars indicate that chironomid selection is density dependent. Although a greater number of individuals selected to oviposit in highly polarized sites, oviposition was also common in sites with low polarization. When habitats are unlimited, chironomid selection is either weakly density dependent, or completely density independent. Chironomids oviposit to a very large extent in sites with high level of polarization, oviposit to a small extent in sites with medium level of polarization, and almost completely disregard unpolarized sites. We suggest that ovipositing females consider the availability of habitats in their surroundings when they choose an oviposition site. When high quality habitats are scarce, more females opt to breed in low quality sites. These findings may be used to limit the spread of Cholera by controlling the habitats available for chironomid oviposition.
Scientific Reports | 2017
Raz Tamir; Amit Lerner; Carynelisa Haspel; Zvy Dubinsky; David Iluz
The urbanization of the shores of the Gulf of Aqaba has exposed the marine environment there, including unique fringing coral reefs, to strong anthropogenic light sources. Here we present the first in situ measurements of artificial nighttime light under water in such an ecosystem, with irradiance measured in 12 wavelength bands, at 19 measurement stations spread over 44 square km, and at 30 depths down to 30-m depth. At 1-m depth, we find downwelling irradiance values that vary from 4.6 × 10−4 μW cm−2 nm−1 500 m from the city to 1 × 10−6 μW cm−2 nm−1 in the center of the gulf (9.5 km from the city) in the yellow channel (589-nm wavelength) and from 1.3 × 10−4 μW cm−2 nm−1 to 4.3 × 10−5 μW cm−2 nm−1 in the blue channel (443-nm wavelength). Down to 10-m depth, we find downwelling irradiance values that vary from 1 × 10−6 μW cm−2 nm−1 to 4.6 × 10−4 μW cm−2 nm−1 in the yellow channel and from 2.6 × 10−5 μW cm−2 nm−1 to 1.3 × 10−4 μW cm−2 nm−1 in the blue channel, and we even detected a signal at 30-m depth. This irradiance could influence such biological processes as the tuning of circadian clocks, the synchronization of coral spawning, recruitment and competition, vertical migration of demersal plankton, feeding patterns, and prey/predator visual interactions.
Biology Open | 2014
Keren Levy; Amit Lerner; Nadav Shashar
ABSTRACT Mate choice is an important ecological behavior in fish, and is often based on visual cues of body patterns. The Crown Butterfly fish Chaetodon paucifasciatus (Chaetodontidae) is a monogamist, territorial species; it swims in close proximity to its partner throughout most of its life. This species is characterized by a pattern of 6–8 vertical black stripes on a white background, on both sides of its body. Our aim was to define spatial features (variations) in body patterns by evaluating the level of dissimilarity between both sides of each individual fish, and the level of dissimilarity between patterns of different individuals. In addition, we tested whether the fish are attracted to or reject specific features of the body patterns. Features were defined and counted using photographs of body patterns. Attraction to or rejection of specific features were tested behaviorally using a dual-choice experiment of video animations of individuals swimming over a coral-reef background. We found that the patterns of each fish and sides of the body were no less dissimilar, compared intraspecificly to other fish, and that each side pattern was unique and distinguishable. Variations in the patterns occurred mostly in the last three posterior stripes. Individuals were mainly attracted to conspecifics with multiple crossing patterns (two or more consecutive crossings), and rejected patterns with holes. Our results suggest that in this species the unique body pattern of each fish is used for conspecific identification of mates and intruders.
Journal of The Optical Society of America A-optics Image Science and Vision | 2012
Amit Lerner; Nadav Shashar; Carynelisa Haspel
A full Mie scattering subroutine is employed to calculate what we call the linear polarization phase function (LPPF; percent polarization and e-vector orientation of radiation as a function of scattering angle) that results from refraction of the direct solar beam from air into water followed by single scattering by spherical hydrosols. The separate effects of refraction at the air-water interface, hydrosol size, the real and imaginary parts of the hydrosol refractive index, and absorption by the surrounding medium (water) on the LPPF are investigated. All of the above factors are found to alter the LPPF, changing the value of the maximum percent polarization (P(max)), the location of P(max), the number of fluctuations in the LPPF, or the location of the neutral points (points of 0 percent polarization), though absorption by the surrounding medium is found to have only a minimal effect. The character and extent of the influence on the LPPF is found to depend on the scattering regime (Rayleigh, Mie, or geometric optics). We conclude that in calculating underwater polarization, it is important to take into consideration Mie scattering even in relatively clear waters. We also find a coupling between the partial polarization and the e-vector orientation, which suggests that for some polarization-based visual tasks, only one of these would suffice. Other implications for aquatic animal polarization vision are discussed.
Vision Research | 2017
Amit Lerner; Ron Shmulevitz; Howard I. Browman; Nadav Shashar
Abstract Polarized light detection has been documented in only a small number of fish species. The benefit of polarization vision for fish is not fully understood, nor is the transduction mechanism that underlies it. Past studies proposed that one possible advantage of polarization vision is that it enhances the contrast of zooplankton targets by breaking their transparency. Here, we used an optomotor apparatus to test the responses of the planktivorous Hardyhead silverside fish Atherinomorus forskalii (Atherinidae) to vertical unpolarized (intensity) and polarized gratings. We also tested and compared the spatial and temporal resolutions of A. forskalii in the intensity and polarization domains. A. forskalii responded to the polarization pattern, but only under illumination that included ultraviolet‐blue (&lgr; > 380 nm) wavelengths. The spatial resolution of A. forskalii was measured as a minimum separable angle of 0.57° (a 1‐mm prey viewed from 100‐mm distance). The temporal resolution to unpolarized vs. polarized gratings was constant, at 33 and 10 Hz respectively at most of the stripe widths tested. At the smallest stripe width tested (1 mm = the minimal separable angle), which correlates with the size of prey typically consumed by these fish, the temporal resolution to the polarized grating increased to 42 Hz. We conclude that A. forskalii is polarization sensitive, may use polarization vision to improve detection of its planktonic prey, and that polarization may be perceived by the fish via a separate visual pathway than intensity.
Scientific Reports | 2016
Amit Lerner; Howard I. Browman
Both attraction and repulsion from linearly polarized light have been observed in zooplankton. A dichotomous choice experiment, consisting of plankton light traps deployed in natural waters at a depth of 30 m that projected either polarized or unpolarized light of the same intensity, was used to test the hypothesis that the North Atlantic copepod, Calanus spp., is linearly polarotactic. In addition, the transparency of these copepods, as they might be seen by polarization insensitive vs. sensitive visual systems, was measured. Calanus spp. exhibited negative polarotaxis with a preference ratio of 1.9:1. Their transparency decreased from 80% to 20% to 30% in the unpolarized, partially polarized, and electric (e-) vector orientation domains respectively - that is, these copepods would appear opaque and conspicuous to a polarization-sensitive viewer looking at them under conditions rich in polarized light. Since the only difference between the two plankton traps was the polarization cue, we conclude that Calanus spp. are polarization sensitive and exhibit negative polarotaxis at low light intensities (albeit well within the sensitivity range reported for copepods). We hypothesize that Calanus spp. can use polarization vision to reduce their risk of predation by polarization-sensitive predators and suggest that this be tested in future experiments.
Journal of Geophysical Research | 2008
Daniel Rosenfeld; William L. Woodley; Amit Lerner; Guy Kelman; Daniel T. Lindsey