Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amit Roy is active.

Publication


Featured researches published by Amit Roy.


Molecular Pharmacology | 2008

Mitochondria-Dependent Reactive Oxygen Species-Mediated Programmed Cell Death Induced by 3,3′-Diindolylmethane through Inhibition of F0F1-ATP Synthase in Unicellular Protozoan Parasite Leishmania donovani

Amit Roy; Agneyo Ganguly; Somdeb BoseDasgupta; Benu Brata Das; Churala Pal; Parasuraman Jaisankar; Hemanta K. Majumder

Mitochondria are the principal site for the generation of cellular ATP by oxidative phosphorylation. F0F1-ATP synthase, a complex V of the electron transport chain, is an important constituent of mitochondria-dependent signaling pathways involved in apoptosis. In the present study, we have shown for the first time that 3,3′-diindolylmethane (DIM), a DNA topoisomerase I poison, inhibits mitochondrial F0F1-ATP synthase of Leishmania donovani and induces programmed cell death (PCD), which is a novel insight into the mechanism in protozoan parasites. DIM-induced inhibition of F0F1-ATP synthase activity causes depletion of mitochondrial ATP levels and significant stimulation of mitochondrial reactive oxygen species (ROS) production, followed by depolarization of mitochondrial membrane potential (ΔΨm). Because ΔΨm is the driving force for mitochondrial ATP synthesis, loss of ΔΨm results in depletion of cellular ATP level. The loss of ΔΨm causes the cellular ROS generation and in turn leads to the oxidative DNA lesions followed by DNA fragmentation. In contrast, loss of ΔΨm leads to release of cytochrome c into the cytosol and subsequently activates the caspase-like proteases, which lead to oligonucleosomal DNA cleavage. We have also shown that mitochondrial DNA-depleted cells are insensitive to DIM to induce PCD. Therefore, mitochondria are necessary for cytotoxicity of DIM in kinetoplastid parasites. Taken together, our study indicates for the first time that DIM-induced mitochondrial dysfunction by inhibition of F0F1-ATP synthase activity leads to PCD in Leishmania spp. parasites, which could be exploited to develop newer potential therapeutic targets.


Apoptosis | 2008

Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani.

Rakhee Das; Amit Roy; Neeta Dutta; Hemanta K. Majumder

Curcumin, a polyphenol compound, has been recognized as a promising anti-cancer drug. The purpose of the present study was to investigate the cytotoxicity of curcumin to Leishmania donovani, the causative agent for visceral leishmaniasis. Flow cytometric analysis revealed that curcumin induced cell cycle arrest at G2/M phase. Incubation of Leishmania promastigotes with curcumin caused exposure of phosphatidylserine to the outer leaflet of plasma membrane. This event is preceded by curcumin-induced formation of reactive oxygen species (ROS) and elevation of cytosolic calcium through the release of calcium ions from intracellular stores as well as by influx of extracellular calcium. Elevation of cytosolic calcium is responsible for depolarization of mitochondrial membrane potential (ΔΨm), release of Cytochrome c into the cytosol and concomitant nuclear alterations that included deoxynucleotidyltransferase-mediated dUTP end labeling (TUNEL) and DNA fragmentation. Taken together, these data indicate that curcumin has promising antileishmanial activity that is mediated by programmed cell death and, accordingly, merits further investigation as a therapeutic option for the treatment of leishmaniasis.


Journal of Biosciences | 1998

Novel techniques of graphical representation and analysis of DNA sequences-A review

Amit Roy; C. Raychaudhury; A. Nandy

The advent of automated DNA sequencing techniques has led to an explosive growth in the number and length of DNAs sequenced frpm different organisms. While this has resulted in a large accumulation of data in the DNA databases, it has also called for the development of suitable techniques for rapid viewing and analysis of the data. Over the last few years several methods have been proposed that address these issues and represent a DNA sequence in a compact graphical form in one-, two- or three-dimensions that can be expanded as necessary to help visualize the patterns in gene sequences and aid in in-depth analysis. Graphical techniques have been found to be useful in highlighting local and global base dominances, to identify regions of extensive repetitive sequences, differentiate between coding and non-coding regions, and to be indicative of evolutionary divergences. Analysis with graphical methods have also provided insights into new structures in DNA sequences such as fractals and long range correlations, and some measures have been developed that help quantify the visual patterns.This review presents a comprehensive study of the graphical representation methods and their applications in viewing and analysing long DNA sequences and evaluates the merits of each of these from a practical viewpoint with prescriptions on domains of applicability of each method. A discussion on the comparative merits and demerits of the various methods and possible future developments have also been included.


ACS Nano | 2012

Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement

Sissel Juul; Christine J. F. Nielsen; Rodrigo Labouriau; Amit Roy; Cinzia Tesauro; Pia W. Jensen; Charlotte Harmsen; Emil L. Kristoffersen; Ya-Ling Chiu; Rikke Frøhlich; Paola Fiorani; Janet Cox-Singh; David Tordrup; Jørn Koch; Anne-Lise Bienvenu; Alessandro Desideri; Stéphane Picot; Eskild Petersen; Kam W. Leong; Yi-Ping Ho; Magnus Stougaard; Birgitta R. Knudsen

We present an attractive new system for the specific and sensitive detection of the malaria-causing Plasmodium parasites. The system relies on isothermal conversion of single DNA cleavage-ligation events catalyzed specifically by the Plasmodium enzyme topoisomerase I to micrometer-sized products detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite/μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate detection of even a few parasites is becoming increasingly important for the continued combat against the disease. We believe that the presented droplet microfluidics platform, which has a high potential for adaptation to point-of-care setups suitable for low-resource settings, may contribute significantly to meet this demand. Moreover, potential future adaptation of the presented setup for the detection of other microorganisms may form the basis for the development of a more generic platform for diagnosis, fresh water or food quality control, or other purposes within applied or basic science.


Cell Death & Differentiation | 2008

The caspase-independent algorithm of programmed cell death in Leishmania induced by baicalein: the role of LdEndoG, LdFEN-1 and LdTatD as a DNA 'degradesome'

Somdeb BoseDasgupta; Benu Brata Das; Souvik Sengupta; Agneyo Ganguly; Amit Roy; Sumit Dey; Gayatri Tripathi; Biswanath Dinda; Hemanta K. Majumder

In the post-genomic perspective, the quest of programmed cell death (PCD) mechanisms in kinetoplastid parasites lies in the identification and characterization of cell death executer proteins. Here, we show that baicalein (BLN), a potent topoisomerase IB inhibitor, generates an oxidative stress in the parasites leading to altered physiological and morphological parameters, which are characteristic of PCD. For the first time we elucidate that, caspase-independent activation of a novel effector molecule, endonuclease G (LdEndoG), mediates BLN-induced cell death. Functional characterization of LdEndoG identifies Flap endonuclease-1 (LdFEN-1) and LdTatD-like nuclease as other effector molecules. BLN treatment translocates LdEndoG from mitochondria to nucleus, where it forms separate complexes with LdFEN-1 and LdTatD to constitute a DNA ‘degradesome’ unique to these parasites. Conditional antisense knockdown of LdEndoG provides protection against PCD. This knowledge paves the path toward a better understanding of the PCD pathway in simpler systems, which could be exploited in anti-leishmanial chemotherapy.


Molecular and Biochemical Parasitology | 2008

A novel ATP-binding cassette transporter, ABCG6 is involved in chemoresistance of Leishmania

Somdeb BoseDasgupta; Agneyo Ganguly; Amit Roy; Tanmoy Mukherjee; Hemanta K. Majumder

ATP-binding cassette (ABC) transporters constitute the biggest family of membrane proteins involved in drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries and in many instances it is due to overexpressed ABC efflux pumps. Progressively adapted camptothecin (CPT)-resistant parasites show overexpression of a novel ABC transporter, which was classified as ABCG6. Transfection and overexpression of LdABCG6 in wild type parasites, shows its localization primarily in the plasma membrane and flagellar pocket region. Overexpressed LdABCG6 confers substantial CPT resistance to the parasites by rapid drug efflux. Various inhibitors have been tested for their ability to revert the CPT-resistant phenotype to specifically understand the inhibition of LdABCG6 transporter. Transport experiments using everted membrane vesicles were carried out to gain an insight into the kinetics of drug transport. This study provides further knowledge of specific membrane traffic ATPase and its involvement in the chemoresistance of Leishmania.


Planta Medica | 2008

Withanolide Z, a New Chlorinated Withanolide from Withania somnifera

Swapan Pramanick; Amit Roy; Shekher Ghosh; Hemanta K. Majumder; Sibabrata Mukhopadhyay

Reverse-phase preparative HPLC analysis of the n-butanol fraction of the methanolic extract of Withania somnifera Dunal (leaves) afforded a novel chlorinated withanolide, namely withanolide Z (1), along with four known withanolides, withanolide B (2), withanolide A (3), 27-hydroxywithanolide B (4) and withaferin A (5). Their structures were elucidated by IR, MS, CD and a combination of 1 D and 2 D NMR spectral analyses. The Leishmania donovani DNA topoisomerase I inhibitory activities of the isolated compounds were determined.


Phytochemistry | 1988

Psophocarpin B1, a storage protein of Psophocarpus tetragonolobus, has chymotrypsin inhibitory activity

Amit Roy; Manoranjan Singh

Abstract Psophocarpin B 1 , a major storage protein of winged bean ( Psophocarpus tetragonolobus ) seeds, inhibits the activity of bovine pancreatic chymotrypsin. This inhibitory activity is abolished by heat treatment above 70°. In germinating seeds total chymotrypsin inhibitory activity (CIA) declines steadily as germination proceeds. By means of the Western blotting technique, it has been demonstrated that both psophocarpin B 1 and CIA disappear concurrently during germination.


Sensors | 2014

Topoisomerase I as a biomarker: detection of activity at the single molecule level.

Joanna Proszek; Amit Roy; Ann-Katrine Jakobsen; Rikke Frøhlich; Birgitta R. Knudsen; Magnus Stougaard

Human topoisomerase I (hTopI) is an essential cellular enzyme. The enzyme is often upregulated in cancer cells, and it is a target for chemotherapeutic drugs of the camptothecin (CPT) family. Response to CPT-based treatment is dependent on hTopI activity, and reduction in activity, and mutations in hTopI have been reported to result in CPT resistance. Therefore, hTOPI gene copy number, mRNA level, protein amount, and enzyme activity have been studied to explain differences in cellular response to CPT. We show that Rolling Circle Enhanced Enzyme Activity Detection (REEAD), allowing measurement of hTopI cleavage-religation activity at the single molecule level, may be used to detect posttranslational enzymatic differences influencing CPT response. These differences cannot be detected by analysis of hTopI gene copy number, mRNA amount, or protein amount, and only become apparent upon measuring the activity of hTopI in the presence of CPT. Furthermore, we detected differences in the activity of the repair enzyme tyrosyl-DNA phosphodiesterase 1, which is involved in repair of hTopI-induced DNA damage. Since increased TDP1 activity can reduce cellular CPT sensitivity we suggest that a combined measurement of TDP1 activity and hTopI activity in presence of CPT will be the best determinant for CPT response.


Molecular Microbiology | 2010

A tyrosyl DNA phosphodiesterase 1 from kinetoplastid parasite Leishmania donovani (LdTdp1) capable of removing topo I–DNA covalent complexes

Bijoylaxmi Banerjee; Amit Roy; Nilkantha Sen; Hemanta K. Majumder

Tyrosyl DNA phosphodiesterase 1 (Tdp1) is a member of phospholipase D superfamily, which cleaves a broad range of 3′‐DNA adducts, the best characterized of which is the phosphodiester bond formed between DNA and topoisomerase IB. This study describes cloning and functional characterization of the enzyme, termed as LdTdp1 in the kinetoplastid parasite Leishmania donovani. Sequence analysis confirmed conservation of the active site motifs typical for all Tdp1 proteins. LdTdp1 activity was detected in the parasite nucleus as well as in the kinetoplast. The enzyme harbours a nuclear localization signal at its C‐terminus. Overexpression of the active enzyme protected the parasites against topoisomerase IB inhibitor camptothecin (CPT) and oxidative agent H2O2‐mediated cytotoxicity and its downregulation rendered the parasites hypersensitive to CPT. Trapping of mutant LdTdp1 on DNA takes place following CPT treatment in L. donovani cells. The expression level and associated activity of LdTdp1 were found to be higher in CPT‐resistant L. donovani parasites. Altogether, this is the first report of Tdp1 from the kinetoplastid parasite L. donovani, which actively participates in topoisomerase I‐mediated DNA damage repair process and thereby counteracts the cytotoxic effect of topoisomerase I inhibitors.

Collaboration


Dive into the Amit Roy's collaboration.

Top Co-Authors

Avatar

Hemanta K. Majumder

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Agneyo Ganguly

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benu Brata Das

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Asoke G. Datta

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Ranjan Bhadra

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Souvik Sengupta

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Parasuraman Jaisankar

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge