Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amit Sahai is active.

Publication


Featured researches published by Amit Sahai.


computer and communications security | 2006

Attribute-based encryption for fine-grained access control of encrypted data

Vipul Goyal; Omkant Pandey; Amit Sahai; Brent Waters

As more sensitive data is shared and stored by third-party sites on the Internet, there will be a need to encrypt data stored at these sites. One drawback of encrypting data, is that it can be selectively shared only at a coarse-grained level (i.e., giving another party your private key). We develop a new cryptosystem for fine-grained sharing of encrypted data that we call Key-Policy Attribute-Based Encryption (KP-ABE). In our cryptosystem, ciphertexts are labeled with sets of attributes and private keys are associated with access structures that control which ciphertexts a user is able to decrypt. We demonstrate the applicability of our construction to sharing of audit-log information and broadcast encryption. Our construction supports delegation of private keys which subsumesHierarchical Identity-Based Encryption (HIBE).


ieee symposium on security and privacy | 2007

Ciphertext-Policy Attribute-Based Encryption

John Bethencourt; Amit Sahai; Brent Waters

In several distributed systems a user should only be able to access data if a user posses a certain set of credentials or attributes. Currently, the only method for enforcing such policies is to employ a trusted server to store the data and mediate access control. However, if any server storing the data is compromised, then the confidentiality of the data will be compromised. In this paper we present a system for realizing complex access control on encrypted data that we call ciphertext-policy attribute-based encryption. By using our techniques encrypted data can be kept confidential even if the storage server is untrusted; moreover, our methods are secure against collusion attacks. Previous attribute-based encryption systems used attributes to describe the encrypted data and built policies into users keys; while in our system attributes are used to describe a users credentials, and a party encrypting data determines a policy for who can decrypt. Thus, our methods are conceptually closer to traditional access control methods such as role-based access control (RBAC). In addition, we provide an implementation of our system and give performance measurements.


theory and application of cryptographic techniques | 2005

Fuzzy identity-based encryption

Amit Sahai; Brent Waters

We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy Identity-Based Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted with an identity, ω ′, if and only if the identities ω and ω ′ are close to each other as measured by the “set overlap” distance metric. A Fuzzy IBE scheme can be applied to enable encryption using biometric inputs as identities; the error-tolerance property of a Fuzzy IBE scheme is precisely what allows for the use of biometric identities, which inherently will have some noise each time they are sampled. Additionally, we show that Fuzzy-IBE can be used for a type of application that we term “attribute-based encryption”. In this paper we present two constructions of Fuzzy IBE schemes. Our constructions can be viewed as an Identity-Based Encryption of a message under several attributes that compose a (fuzzy) identity. Our IBE schemes are both error-tolerant and secure against collusion attacks. Additionally, our basic construction does not use random oracles. We prove the security of our schemes under the Selective-ID security model.


theory and application of cryptographic techniques | 2010

Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption

Allison B. Lewko; Tatsuaki Okamoto; Amit Sahai; Katsuyuki Takashima; Brent Waters

We present two fully secure functional encryption schemes: a fully secure attribute-based encryption (ABE) scheme and a fully secure (attribute-hiding) predicate encryption (PE) scheme for inner-product predicates. In both cases, previous constructions were only proven to be selectively secure. Both results use novel strategies to adapt the dual system encryption methodology introduced by Waters. We construct our ABE scheme in composite order bilinear groups, and prove its security from three static assumptions. Our ABE scheme supports arbitrary monotone access formulas. Our predicate encryption scheme is constructed via a new approach on bilinear pairings using the notion of dual pairing vector spaces proposed by Okamoto and Takashima.


computer and communications security | 2007

Attribute-based encryption with non-monotonic access structures

Rafail Ostrovsky; Amit Sahai; Brent Waters

We construct an Attribute-Based Encryption (ABE) scheme that allows a users private key to be expressed in terms of any access formula over attributes. Previous ABE schemes were limited to expressing only monotonic access structures. We provide a proof of security for our scheme based on the Decisional Bilinear Diffie-Hellman (BDH) assumption. Furthermore, the performance of our new scheme compares favorably with existing, less-expressive schemes.


international cryptology conference | 2008

Efficient non-interactive proof systems for bilinear groups

Jens Groth; Amit Sahai

Non-interactive zero-knowledge proofs and non-interactive witnessindistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that non-interactive zeroknowledge proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this paper is a general methodology for constructing very simple and efficient non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear map, without needing a reduction to Circuit Satisfiability. Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theoretical purposes to the large class of practical cryptographic protocols based on bilinear groups.


foundations of computer science | 2013

Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits

Sanjam Garg; Craig Gentry; Shai Halevi; Mariana Raykova; Amit Sahai; Brent Waters

In this work, we study indistinguishability obfuscation and functional encryption for general circuits: Indistinguishability obfuscation requires that given any two equivalent circuits C0 and C1 of similar size, the obfuscations of C0 and C1 should be computationally indistinguishable. In functional encryption, cipher texts encrypt inputs x and keys are issued for circuits C. Using the key SKC to decrypt a cipher text CTx = Enc(x), yields the value C(x) but does not reveal anything else about x. Furthermore, no collusion of secret key holders should be able to learn anything more than the union of what they can each learn individually. We give constructions for indistinguishability obfuscation and functional encryption that supports all polynomial-size circuits. We accomplish this goal in three steps: - (1) We describe a candidate construction for indistinguishability obfuscation for NC1 circuits. The security of this construction is based on a new algebraic hardness assumption. The candidate and assumption use a simplified variant of multilinear maps, which we call Multilinear Jigsaw Puzzles. (2) We show how to use indistinguishability obfuscation for NC1 together with Fully Homomorphic Encryption (with decryption in NC1) to achieve indistinguishability obfuscation for all circuits. (3) Finally, we show how to use indistinguishability obfuscation for circuits, public-key encryption, and non-interactive zero knowledge to achieve functional encryption for all circuits. The functional encryption scheme we construct also enjoys succinct cipher texts, which enables several other applications.


symposium on the theory of computing | 2002

Universally composable two-party and multi-party secure computation

Ran Canetti; Yehuda Lindell; Rafail Ostrovsky; Amit Sahai

We show how to securely realize any multi-party functionality in a universally composable way, regardless of the number of corrupted participants. That is, we consider a multi-party network with open communication and an adversary that can adaptively corrupt as many parties as it wishes. In this setting, our protocols allow any subset of the parties (with pairs of parties being a special case) to securely realize any desired functionality of their local inputs, and be guaranteed that security is preserved regardless of the activity in the rest of the network. This implies that security is preserved under concurrent composition of an unbounded number of protocol executions, it implies non-malleability with respect to arbitrary protocols, and more. Our constructions are in the common reference string model and make general intractability assumptions.


international cryptology conference | 2003

Private Circuits: Securing Hardware against Probing Attacks

Yuval Ishai; Amit Sahai; David A. Wagner

Can you guarantee secrecy even if an adversary can eavesdrop on your brain? We consider the problem of protecting privacy in circuits, when faced with an adversary that can access a bounded number of wires in the circuit. This question is motivated by side channel attacks, which allow an adversary to gain partial access to the inner workings of hardware. Recent work has shown that side channel attacks pose a serious threat to cryptosystems implemented in embedded devices. In this paper, we develop theoretical foundations for security against side channels. In particular, we propose several efficient techniques for building private circuits resisting this type of attacks. We initiate a systematic study of the complexity of such private circuits, and in contrast to most prior work in this area provide a formal threat model and give proofs of security for our constructions.


foundations of computer science | 1999

Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security

Amit Sahai

We introduce the notion of non-malleable non-interactive zero-knowledge (NIZK) proof systems. We show how to transform any ordinary NIZK proof system into one that has strong non-malleability properties. We then show that the elegant encryption scheme of Naor and Yung (1990) can be made secure against the strongest form of chosen-ciphertext attack by using a non-malleable NIZK proof instead of a standard NIZK proof. Our encryption scheme is simple to describe and works in the standard cryptographic model under, general assumptions. The encryption scheme can be realized assuming the existence of trapdoor permutations.

Collaboration


Dive into the Amit Sahai's collaboration.

Top Co-Authors

Avatar

Brent Waters

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuval Ishai

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhishek Jain

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Sanjam Garg

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge