Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amitai Shenhav is active.

Publication


Featured researches published by Amitai Shenhav.


Neuron | 2013

The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function

Amitai Shenhav; Matthew Botvinick; Jonathan D. Cohen

The dorsal anterior cingulate cortex (dACC) has a near-ubiquitous presence in the neuroscience of cognitive control. It has been implicated in a diversity of functions, from reward processing and performance monitoring to the execution of control and action selection. Here, we propose that this diversity can be understood in terms of a single underlying function: allocation of control based on an evaluation of the expected value of control (EVC). We present a normative model of EVC that integrates three critical factors: the expected payoff from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in terms of cognitive effort. We propose that dACC integrates this information, using it to determine whether, where and how much control to allocate. We then consider how the EVC model can explain the diverse array of findings concerning dACC function.


Journal of Experimental Psychology: General | 2012

Divine intuition: Cognitive style influences belief in God

Amitai Shenhav; David G. Rand; Joshua D. Greene

Some have argued that belief in God is intuitive, a natural (by-)product of the human mind given its cognitive structure and social context. If this is true, the extent to which one believes in God may be influenced by ones more general tendency to rely on intuition versus reflection. Three studies support this hypothesis, linking intuitive cognitive style to belief in God. Study 1 showed that individual differences in cognitive style predict belief in God. Participants completed the Cognitive Reflection Test (CRT; Frederick, 2005), which employs math problems that, although easily solvable, have intuitively compelling incorrect answers. Participants who gave more intuitive answers on the CRT reported stronger belief in God. This effect was not mediated by education level, income, political orientation, or other demographic variables. Study 2 showed that the correlation between CRT scores and belief in God also holds when cognitive ability (IQ) and aspects of personality were controlled. Moreover, both studies demonstrated that intuitive CRT responses predicted the degree to which individuals reported having strengthened their belief in God since childhood, but not their familial religiosity during childhood, suggesting a causal relationship between cognitive style and change in belief over time. Study 3 revealed such a causal relationship over the short term: Experimentally inducing a mindset that favors intuition over reflection increases self-reported belief in God.


Nature Neuroscience | 2016

Dorsal anterior cingulate cortex and the value of control

Amitai Shenhav; Jonathan D. Cohen; Matthew Botvinick

Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the regions association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACCs involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACCs sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACCs particular involvement in decisions regarding foraging or otherwise altering ones behavior.


The Journal of Neuroscience | 2014

Integrative moral judgment: dissociating the roles of the amygdala and ventromedial prefrontal cortex.

Amitai Shenhav; Joshua D. Greene

A decades research highlights a critical dissociation between automatic and controlled influences on moral judgment, which is subserved by distinct neural structures. Specifically, negative automatic emotional responses to prototypically harmful actions (e.g., pushing someone off of a footbridge) compete with controlled responses favoring the best consequences (e.g., saving five lives instead of one). It is unknown how such competitions are resolved to yield “all things considered” judgments. Here, we examine such integrative moral judgments. Drawing on insights from research on self-interested, value-based decision-making in humans and animals, we test a theory concerning the respective contributions of the amygdala and ventromedial prefrontal cortex (vmPFC) to moral judgment. Participants undergoing fMRI responded to moral dilemmas, separately evaluating options for their utility (Which does the most good?), emotional aversiveness (Which feels worse?), and overall moral acceptability. Behavioral data indicate that emotional aversiveness and utility jointly predict “all things considered” integrative judgments. Amygdala response tracks the emotional aversiveness of harmful utilitarian actions and overall disapproval of such actions. During such integrative moral judgments, the vmPFC is preferentially engaged relative to utilitarian and emotional assessments. Amygdala-vmPFC connectivity varies with the role played by emotional input in the task, being the lowest for pure utilitarian assessments and the highest for pure emotional assessments. These findings, which parallel those of research on self-interested economic decision-making, support the hypothesis that the amygdala provides an affective assessment of the action in question, whereas the vmPFC integrates that signal with a utilitarian assessment of expected outcomes to yield “all things considered” moral judgments.


Neuron | 2008

Cholinergic enhancement reduces spatial spread of visual responses in human early visual cortex

Michael A. Silver; Amitai Shenhav; Mark D'Esposito

Animal studies have shown that acetylcholine decreases excitatory receptive field size and spread of excitation in early visual cortex. These effects are thought to be due to facilitation of thalamocortical synaptic transmission and/or suppression of intracortical connections. We have used functional magnetic resonance imaging (fMRI) to measure the spatial spread of responses to visual stimulation in human early visual cortex. The cholinesterase inhibitor donepezil was administered to normal healthy human subjects to increase synaptic levels of acetylcholine in the brain. Cholinergic enhancement with donepezil decreased the spatial spread of excitatory fMRI responses in visual cortex, consistent with a role of acetylcholine in reducing excitatory receptive field size of cortical neurons. Donepezil also reduced response amplitude in visual cortex, but the cholinergic effects on spatial spread were not a direct result of reduced amplitude. These findings demonstrate that acetylcholine regulates spatial integration in human visual cortex.


Annual Review of Neuroscience | 2017

Toward a Rational and Mechanistic Account of Mental Effort.

Amitai Shenhav; Sebastian Musslick; Falk Lieder; Wouter Kool; Thomas L. Griffiths; Jonathan D. Cohen; Matthew Botvinick

In spite of its familiar phenomenology, the mechanistic basis for mental effort remains poorly understood. Although most researchers agree that mental effort is aversive and stems from limitations in our capacity to exercise cognitive control, it is unclear what gives rise to those limitations and why they result in an experience of control as costly. The presence of these control costs also raises further questions regarding how best to allocate mental effort to minimize those costs and maximize the attendant benefits. This review explores recent advances in computational modeling and empirical research aimed at addressing these questions at the level of psychological process and neural mechanism, examining both the limitations to mental effort exertion and how we manage those limited cognitive resources. We conclude by identifying remaining challenges for theoretical accounts of mental effort as well as possible applications of the available findings to understanding the causes of and potential solutions for apparent failures to exert the mental effort required of us.


Cognitive, Affective, & Behavioral Neuroscience | 2013

Affective value and associative processing share a cortical substrate

Amitai Shenhav; Lisa Feldman Barrett; Moshe Bar

The brain stores information in an associative manner so that contextually related entities are connected in memory. Such associative representations mediate the brain’s ability to generate predictions about which other objects and events to expect in a given context. Likewise, the brain encodes and is able to rapidly retrieve the affective value of stimuli in our environment. That both contextual associations and affect serve as building blocks of numerous mental functions often makes interpretation of brain activation ambiguous. A critical brain region where such activation has often resulted in equivocal interpretation is the medial orbitofrontal cortex (mOFC), which has been implicated separately in both affective and associative processing. To characterize its role more unequivocally, we tested whether activity in the mOFC was most directly attributable to affective processing, associative processing, or a combination of both. Subjects performed an object recognition task while undergoing fMRI scans. Objects varied independently in their affective valence and in their degree of association with other objects (associativity). Analyses revealed an overlapping sensitivity whereby the left mOFC responded both to increasingly positive affective value and to stronger associativity. These two properties individually accounted for mOFC response, even after controlling for their interrelationship. The role of the mOFC is either general enough to encompass associations that link stimuli both with reinforcing outcomes and with other stimuli or abstract enough to use both valence and associativity in conjunction to inform downstream processes related to perception and action. These results may further point to a fundamental relationship between associativity and positive affect.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Neural correlates of dueling affective reactions to win–win choices

Amitai Shenhav; Randy L. Buckner

Significance Choices between multiple good prospects (e.g., job offers) are known to generate anxiety, even as the decision maker feels positivity toward their options. Here, we explored the basis for these (paradoxically) simultaneously occurring experiences. We evaluated brain activity during win–win choices relative to how positive and anxious the participant later reported having felt when encountering a set of options, and relative to subsequent choice reversals. Our participants felt increasingly positive and anxious with increasingly good options, and these two experiences were accounted for by dissociable neural circuits. Positivity-related circuits primarily tracked the value of the best item whereas anxiety-related circuits primarily tracked the level of competition between potential responses, and whether the participants would later decide to reverse their choice. Win–win choices cause anxiety, often more so than decisions lacking the opportunity for a highly desired outcome. These anxious feelings can paradoxically co-occur with positive feelings, raising important implications for individual decision styles and general well-being. Across three studies, people chose between products that varied in personal value. Participants reported feeling most positive and most anxious when choosing between similarly high-valued products. Behavioral and neural results suggested that this paradoxical experience resulted from parallel evaluations of the expected outcome (inducing positive affect) versus the cost of choosing a response (inducing anxiety). Positive feelings were reduced when there was no high-value option, and anxiety was reduced when only one option was highly valued. Dissociable regions within the striatum and the medial prefrontal cortex (mPFC) tracked these dueling affective reactions during choice. Ventral regions, associated with stimulus valuation, tracked positive feelings and the value of the best item. Dorsal regions, associated with response valuation, tracked anxiety. In addition to tracking anxiety, the dorsal mPFC was associated with conflict during the current choice, and activity levels across individual items predicted whether that choice would later be reversed during an unexpected reevaluation phase. By revealing how win–win decisions elicit responses in dissociable brain systems, these results help resolve the paradox of win–win choices. They also provide insight into behaviors that are associated with these two forms of affect, such as why we are pulled toward good options but may still decide to delay or avoid choosing among them.


Cognitive, Affective, & Behavioral Neuroscience | 2016

Dorsal anterior cingulate and ventromedial prefrontal cortex have inverse roles in both foraging and economic choice

Amitai Shenhav; Mark A Straccia; Matthew Botvinick; Jonathan D. Cohen

Recent research has highlighted a distinction between sequential foraging choices and traditional economic choices between simultaneously presented options. This was partly motivated by observations in Kolling, Behrens, Mars, and Rushworth, Science, 336(6077), 95–98 (2012) (hereafter, KBMR) that these choice types are subserved by different circuits, with dorsal anterior cingulate (dACC) preferentially involved in foraging and ventromedial prefrontal cortex (vmPFC) preferentially involved in economic choice. To support this account, KBMR used fMRI to scan human subjects making either a foraging choice (between exploiting a current offer or swapping for potentially better rewards) or an economic choice (between two reward-probability pairs). This study found that dACC better tracked values pertaining to foraging, whereas vmPFC better tracked values pertaining to economic choice. We recently showed that dACC’s role in these foraging choices is better described by the difficulty of choosing than by foraging value, when correcting for choice biases and testing a sufficiently broad set of foraging values (Shenhav, Straccia, Cohen, & Botvinick Nature Neuroscience, 17(9), 1249–1254, 2014). Here, we extend these findings in 3 ways. First, we replicate our original finding with a larger sample and a task modified to address remaining methodological gaps between our previous experiments and that of KBMR. Second, we show that dACC activity is best accounted for by choice difficulty alone (rather than in combination with foraging value) during both foraging and economic choices. Third, we show that patterns of vmPFC activity, inverted relative to dACC, also suggest a common function across both choice types. Overall, we conclude that both regions are similarly engaged by foraging-like and economic choice.


Trends in Cognitive Sciences | 2018

The Effort Paradox: Effort Is Both Costly and Valued

Michael Inzlicht; Amitai Shenhav; Christopher Y. Olivola

According to prominent models in cognitive psychology, neuroscience, and economics, effort (be it physical or mental) is costly: when given a choice, humans and non-human animals alike tend to avoid effort. Here, we suggest that the opposite is also true and review extensive evidence that effort can also add value. Not only can the same outcomes be more rewarding if we apply more (not less) effort, sometimes we select options precisely because they require effort. Given the increasing recognition of efforts role in motivation, cognitive control, and value-based decision-making, considering this neglected side of effort will not only improve formal computational models, but also provide clues about how to promote sustained mental effort across time.

Collaboration


Dive into the Amitai Shenhav's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge