Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amiya K. Ghosh is active.

Publication


Featured researches published by Amiya K. Ghosh.


Nature Genetics | 2012

FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair

Weibin Zhou; Edgar A. Otto; Andrew Cluckey; Rannar Airik; Toby W. Hurd; Moumita Chaki; Katrina A. Diaz; Francis P. Lach; Geoffrey R Bennett; Heon Yung Gee; Amiya K. Ghosh; Sivakumar Natarajan; Supawat Thongthip; Uma Veturi; Susan J. Allen; Sabine Janssen; Gokul Ramaswami; Joanne Dixon; Felix Burkhalter; Martin Spoendlin; Holger Moch; Michael J. Mihatsch; Jérôme Verine; Richard Reade; Hany Soliman; Michel Godin; Denes Kiss; Guido Monga; Gianna Mazzucco; Kerstin Amann

Chronic kidney disease (CKD) represents a major health burden. Its central feature of renal fibrosis is not well understood. By exome sequencing, we identified mutations in FAN1 as a cause of karyomegalic interstitial nephritis (KIN), a disorder that serves as a model for renal fibrosis. Renal histology in KIN is indistinguishable from that of nephronophthisis, except for the presence of karyomegaly. The FAN1 protein has nuclease activity and acts in DNA interstrand cross-link (ICL) repair within the Fanconi anemia DNA damage response (DDR) pathway. We show that cells from individuals with FAN1 mutations have sensitivity to the ICL-inducing agent mitomycin C but do not exhibit chromosome breakage or cell cycle arrest after diepoxybutane treatment, unlike cells from individuals with Fanconi anemia. We complemented ICL sensitivity with wild-type FAN1 but not with cDNA having mutations found in individuals with KIN. Depletion of fan1 in zebrafish caused increased DDR, apoptosis and kidney cysts. Our findings implicate susceptibility to environmental genotoxins and inadequate DNA repair as novel mechanisms contributing to renal fibrosis and CKD.


The EMBO Journal | 2001

The non‐receptor tyrosine kinase Syk is a target of Cbl‐mediated ubiquitylation upon B‐cell receptor stimulation

Navin Rao; Amiya K. Ghosh; Satoshi Ota; Pengcheng Zhou; Alagarsamy Lakku Reddi; Kaoru Hakezi; Brian K. Druker; Jiong Wu; Hamid Band

The negative regulator Cbl functions as a ubiquitin ligase towards activated receptor tyrosine kinases and facilitates their transport to lysosomes. Whether Cbl ubiquitin ligase activity mediates its negative regulatory effects on cytoplasmic tyrosine kinases of the Syk/ZAP‐70 family has not been addressed, nor is it known whether these kinases are regulated via ubiquitylation during lymphocyte B‐cell receptor engagement. Here we show that B‐cell receptor stimulation in Ramos cells induces the ubiquitylation of Syk tyrosine kinase which is inhibited by a dominant‐negative mutant of Cbl. Intact tyrosine kinase‐binding and RING finger domains of Cbl were found to be essential for Syk ubiquitylation in 293T cells and for in vitro Syk ubiquitylation. These same domains were also essential for Cbl‐mediated negative regulation of Syk as measured using an NFAT‐luciferase reporter in a lymphoid cell. Association with Cbl did not alter the kinase activity of Syk. Altogether, our results support an essential role for Cbl ubiquitin ligase activity in the negative regulation of Syk, and establish that ubiquitylation provides a mechanism of Cbl‐mediated negative regulation of cytoplasmic targets.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Negative regulation of Lck by Cbl ubiquitin ligase

Navin Rao; Sachiko Miyake; Alagarsamy Lakku Reddi; Patrice Douillard; Amiya K. Ghosh; Ingrid Dodge; Pengcheng Zhou; Norvin Fernandes; Hamid Band

The Cbl-family ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent targeting to lysosomes. Cbl associates with the lymphoid-restricted nonreceptor tyrosine kinase Lck, but the functional relevance of this interaction remains unknown. Here, we demonstrate that T cell receptor and CD4 coligation on human T cells results in enhanced association between Cbl and Lck, together with Lck ubiquitination and degradation. A Cbl−/− T cell line showed a marked deficiency in Lck ubiquitination and increased levels of kinase-active Lck. Coexpression in 293T cells demonstrated that Lck kinase activity and Cbl ubiquitin ligase activity were essential for Lck ubiquitination and negative regulation of Lck-dependent serum response element-luciferase reporter activity. The Lck SH3 domain was pivotal for Cbl-Lck association and Cbl-mediated Lck degradation, with a smaller role for interactions mediated by the Cbl tyrosine kinase-binding domain. Finally, analysis of a ZAP-70-deficient T cell line revealed that Cbl inhibited Lck-dependent mitogen-activated protein kinase activation, and an intact Cbl RING finger domain was required for this functional effect. Our results demonstrate a direct, ubiquitination-dependent, negative regulatory role of Cbl for Lck in T cells, independent of Cbl-mediated regulation of ZAP-70.


Journal of Medical Genetics | 2011

Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy

Edgar A. Otto; Gokul Ramaswami; Sabine Janssen; Moumita Chaki; Susan J. Allen; Weibin Zhou; Rannar Airik; Toby W. Hurd; Amiya K. Ghosh; Matthias Wolf; Bernd Hoppe; Thomas J. Neuhaus; Detlef Bockenhauer; David V. Milford; Neveen A. Soliman; Corinne Antignac; Sophie Saunier; Colin A. Johnson; Friedhelm Hildebrandt

Background Nephronophthisis associated ciliopathies (NPHP-AC) comprise a group of autosomal recessive cystic kidney diseases that includes nephronophthisis (NPHP), Senior-Loken syndrome (SLS), Joubert syndrome (JBTS), and Meckel-Gruber syndrome (MKS). To date, causative mutations in NPHP-AC have been described for 18 different genes, rendering mutation analysis tedious and expensive. To overcome the broad genetic locus heterogeneity, a strategy of DNA pooling with consecutive massively parallel resequencing (MPR) was devised. Methods In 120 patients with severe NPHP-AC phenotypes, five pools of genomic DNA with 24 patients each were prepared which were used as templates in order to PCR amplify all 376 exons of 18 NPHP-AC genes (NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8, TMEM67, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, TTC21B, MKS1, and XPNPEP3). PCR products were then subjected to MPR on an Illumina Genome-Analyser and mutations were subsequently assigned to their respective mutation carrier via CEL I endonuclease based heteroduplex screening and confirmed by Sanger sequencing. Results For proof of principle, DNA from patients with known mutations was used and detection of 22 out of 24 different alleles (92% sensitivity) was demonstrated. MPR led to the molecular diagnosis in 30/120 patients (25%) and 54 pathogenic mutations (27 novel) were identified in seven different NPHP-AC genes. Additionally, in 24 patients only single heterozygous variants of unknown significance were found. Conclusions The combined approach of DNA pooling followed by MPR strongly facilitates mutation analysis in broadly heterogeneous single gene disorders. The lack of mutations in 75% of patients in this cohort indicates further extensive heterogeneity in NPHP-AC.


Human Molecular Genetics | 2010

Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development

Amiya K. Ghosh; Carlos A. Murga-Zamalloa; Lansze Chan; Peter F. Hitchcock; Anand Swaroop; Hemant Khanna

Dysfunction of primary cilia is associated with tissue-specific or syndromic disorders. RPGR is a ciliary protein, mutations in which can lead to retinitis pigmentosa (RP), cone-rod degeneration, respiratory infections and hearing disorders. Though RPGR is implicated in ciliary transport, the pathogenicity of RPGR mutations and the mechanism of underlying phenotypic heterogeneity are still unclear. Here we have utilized genetic rescue studies in zebrafish to elucidate the effect of human disease-associated mutations on its function. We show that rpgr is expressed predominantly in the retina, brain and gut of zebrafish. In the retina, RPGR primarily localizes to the sensory cilium of photoreceptors. Antisense morpholino (MO)-mediated knockdown of rpgr function in zebrafish results in reduced length of Kupffers vesicle (KV) cilia and is associated with ciliary anomalies including shortened body-axis, kinked tail, hydrocephaly and edema but does not affect retinal development. These phenotypes can be rescued by wild-type (WT) human RPGR. Several of the RPGR mutants can also reverse the MO-induced phenotype, suggesting their potential hypomorphic function. Notably, selected RPGR mutations observed in XLRP (T99N, E589X) or syndromic RP (T124fs, K190fs and L280fs) do not completely rescue the rpgr-MO phenotype, indicating a more deleterious effect of the mutation on the function of RPGR. We propose that RPGR is involved in cilia-dependent cascades during development in zebrafish. Our studies provide evidence for a heterogenic effect of the disease-causing mutations on the function of RPGR.


Investigative Ophthalmology & Visual Science | 2013

Ablation of the X-linked retinitis pigmentosa 2 (Rp2) gene in mice results in opsin mislocalization and photoreceptor degeneration.

Linjing Li; Naheed W. Khan; Toby W. Hurd; Amiya K. Ghosh; Christiana L. Cheng; Robert S. Molday; John R. Heckenlively; Anand Swaroop; Hemant Khanna

PURPOSE Mutations in the RP2 gene are associated with 10% to 15% of X-linked retinitis pigmentosa (XLRP), a debilitating disorder characterized by the degeneration of retinal rod and cone photoreceptors. The molecular mechanism of pathogenesis of photoreceptor degeneration in XLRP-RP2 has not been elucidated, and no treatment is currently available. This study was undertaken to investigate the pathogenesis of RP2-associated retinal degeneration. METHODS We introduced loxP sites that flank exon 2, a mutational hotspot in XLRP-RP2, in the mouse Rp2 gene. We then produced Rp2-null allele using transgenic mice that expressed Cre-recombinase under control of the ubiquitous CAG promoter. Electroretinography (ERG), histology, light microscopy, transmission electron microscopy, and immunofluorescence microscopy were performed to ascertain the effect of ablation of Rp2 on photoreceptor development, function, and protein trafficking. RESULTS Although no gross abnormalities were detected in the Rp2(null) mice, photopic (cone) and scotopic (rod) function as measured by ERG showed a gradual decline starting as early as 1 month of age. We also detected slow progressive degeneration of the photoreceptor membrane discs in the mutant retina. These defects were associated with mislocalization of cone opsins to the nuclear and synaptic layers and reduced rhodopsin content in the outer segment of mutant retina prior to the onset of photoreceptor degeneration. CONCLUSIONS Our studies suggest that RP2 contributes to the maintenance of photoreceptor function and that cone opsin mislocalization represents an early step in XLRP caused by RP2 mutations. The Rp2(null) mice should serve as a useful preclinical model for testing gene- and cell-based therapies.


Journal of Biological Chemistry | 2011

Accumulation of the Raf-1 Kinase Inhibitory Protein (Rkip) Is Associated with Cep290-mediated Photoreceptor Degeneration in Ciliopathies

Carlos A. Murga-Zamalloa; Amiya K. Ghosh; Suresh B. Patil; Nathan A. Reed; Lan Sze Chan; Supriya Davuluri; Johan Peränen; Toby W. Hurd; Rivka A. Rachel; Hemant Khanna

Primary cilia regulate polarized protein trafficking in photoreceptors, which are dynamic and highly compartmentalized sensory neurons of retina. The ciliary protein Cep290 modulates cilia formation and is frequently mutated in syndromic and non-syndromic photoreceptor degeneration. However, the underlying mechanism of associated retinopathy is unclear. Using the Cep290 mutant mouse rd16 (retinal degeneration 16), we show that Cep290-mediated photoreceptor degeneration is associated with aberrant accumulation of its novel interacting partner Rkip (Raf-1 kinase inhibitory protein). This effect is phenocopied by morpholino-mediated depletion of cep290 in zebrafish. We further demonstrate that ectopic accumulation of Rkip leads to defective cilia formation in zebrafish and cultured cells, an effect mediated by its interaction with the ciliary GTPase Rab8A. Our data suggest that Rkip prevents cilia formation and is associated with Cep290-mediated photoreceptor degeneration. Furthermore, our results indicate that preventing accumulation of Rkip could potentially ameliorate such degeneration.


Aging Cell | 2014

Aging is associated with increased regulatory T-cell function

Sanjay K. Garg; Colin Delaney; Tomomi Toubai; Amiya K. Ghosh; Pavan Reddy; Ruma Banerjee; Raymond Yung

Regulatory T‐cell (Treg, CD4+CD25+) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T‐cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3–4 months) and aged (18–20 months) C57BL/6 mice. DNA from CD4+ T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T‐cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling–mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL‐10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T‐cell activity. Taken together, these results reveal a potential mechanism of higher Treg‐mediated activity that may contribute to increased immune suppression with age.


PLOS Genetics | 2014

Nephronophthisis-Associated CEP164 Regulates Cell Cycle Progression, Apoptosis and Epithelial-to-Mesenchymal Transition

Gisela G. Slaats; Amiya K. Ghosh; Lucas L. Falke; Stéphanie Le Corre; Indra A. Shaltiel; Glenn van de Hoek; Timothy D Klasson; Marijn Stokman; Ive Logister; Marianne C. Verhaar; Roel Goldschmeding; Tri Q. Nguyen; Iain A. Drummond; Friedhelm Hildebrandt; Rachel H. Giles

We recently reported that centrosomal protein 164 (CEP164) regulates both cilia and the DNA damage response in the autosomal recessive polycystic kidney disease nephronophthisis. Here we examine the functional role of CEP164 in nephronophthisis-related ciliopathies and concomitant fibrosis. Live cell imaging of RPE-FUCCI (fluorescent, ubiquitination-based cell cycle indicator) cells after siRNA knockdown of CEP164 revealed an overall quicker cell cycle than control cells, although early S-phase was significantly longer. Follow-up FACS experiments with renal IMCD3 cells confirm that Cep164 siRNA knockdown promotes cells to accumulate in S-phase. We demonstrate that this effect can be rescued by human wild-type CEP164, but not disease-associated mutants. siRNA of CEP164 revealed a proliferation defect over time, as measured by CyQuant assays. The discrepancy between accelerated cell cycle and inhibited overall proliferation could be explained by induction of apoptosis and epithelial-to-mesenchymal transition. Reduction of CEP164 levels induces apoptosis in immunofluorescence, FACS and RT-QPCR experiments. Furthermore, knockdown of Cep164 or overexpression of dominant negative mutant allele CEP164 Q525X induces epithelial-to-mesenchymal transition, and concomitant upregulation of genes associated with fibrosis. Zebrafish injected with cep164 morpholinos likewise manifest developmental abnormalities, impaired DNA damage signaling, apoptosis and a pro-fibrotic response in vivo. This study reveals a novel role for CEP164 in the pathogenesis of nephronophthisis, in which mutations cause ciliary defects coupled with DNA damage induced replicative stress, cell death, and epithelial-to-mesenchymal transition, and suggests that these events drive the characteristic fibrosis observed in nephronophthisis kidneys.


Journal of The American Society of Nephrology | 2014

Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling

Rannar Airik; Gisela G. Slaats; Zhi Guo; Anna Carina Weiss; Naheed W. Khan; Amiya K. Ghosh; Toby W. Hurd; Simon Bekker-Jensen; Jacob M. Schrøder; Steve J. Elledge; Jens S. Andersen; Andreas Kispert; Maddalena Castelli; Alessandra Boletta; Rachel H. Giles; Friedhelm Hildebrandt

Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8(gt/gt) mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8(gt/gt)-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8(gt/gt) mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specific disease mechanisms.

Collaboration


Dive into the Amiya K. Ghosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hemant Khanna

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamid Band

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rannar Airik

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theresa Mau

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge