Amjad Farah
University of Ontario Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amjad Farah.
2010 14th International Heat Transfer Conference, Volume 3 | 2010
Sarah Mokry; Amjad Farah; Krysten King; Sahil Gupta; Igor Pioro; Pavel Kirillov
This paper presents an analysis of heat-transfer to SuperCritical Water (SCW) in bare vertical tubes. A large set of experimental data, obtained in Russia, was analyzed and a new heat-transfer correlation for SCW was developed. This experimental dataset was obtained within conditions similar to those for proposed SuperCritical Water-cooled nuclear Reactor (SCWR) concepts. Thus, the new correlation presented in this paper can be used for preliminary heat-transfer calculations in SCWR fuel channels. The experimental dataset was obtained for SCW flowing upward in a 4-m-long vertical bare tube. The data was collected at pressures of about 24 MPa for several combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudocritical temperature. The values ranged for mass flux from 200–1500 kg/m2 s, for heat flux up to 1250 kW/m2 and for inlet temperatures from 320 to 350°C. Previous studies have confirmed that there are three heat-transfer regimes for forced convective heat transfer to water flowing inside tubes at supercritical pressures: (1) Normal Heat-Transfer (NHT) regime; (2) Deteriorated Heat-Transfer (DHT) regime, characterized by lower than expected Heat Transfer Coefficients (HTCs) (i.e., higher than expected wall temperatures) than in the NHT regime; and (3) Improved Heat-Transfer (IHT) regime with higher-than-expected HTC values, and thus lower values of wall temperature within some part of a test section compared to those of the NHT regime. Also, previous studies have shown that the HTC values calculated with the Dittus-Boelter and Bishop et al. correlations deviate quite substantially from those obtained experimentally. In particular, the Dittus-Boelter correlation significantly over predicts the experimental data within the pseudocritical range. A new heat-transfer correlation for forced convective heat-transfer in the NHT regime to SCW in a bare vertical tube is presented in this paper. It has demonstrated a relatively good fit for HTC values (±25%) and for wall temperature calculations (±15%) for the analyzed dataset. This correlation can be used for supercritical water heat exchangers linked to indirect-cycle concepts and the co-generation of hydrogen, for future comparisons with other independent datasets, with bundle data, as the reference case, for the verification of computer codes for SCWR core thermalhydraulics and for the verification of scaling parameters between water and modeling fluids.Copyright
Journal of Nuclear Engineering and Radiation Science | 2015
Marija Miletic; Wargha Peiman; Amjad Farah; Jeffrey Samuel; Alexey Dragunov; Igor Pioro
Nuclear power becomes more and more important in many countries worldwide as a basis for current and future electrical energy generation. The largest group of operating nuclear power plants (NPPs) equipped with water-cooled reactors (96% of all NPPs) has gross thermal efficiencies ranging from 30–36%. Such relatively low values of thermal efficiencies are due to lower pressures/temperatures at the inlet to a turbine (4.5–7.8 MPa/257–293°C). However, modern combined-cycle power plants (Brayton gas-turbine cycle and subcritical-pressure steam Rankine cycle, fueled by natural gas) and supercritical-pressure coal-fired power plants have reached gross thermal efficiencies of 62% and 55%, respectively. Therefore, next generation or Generation IV NPPs with water-cooled reactors should have thermal efficiencies as close as possible to those of modern thermal power plants. A significant increase in thermal efficiencies of water-cooled NPPs can be possible only due to increasing turbine inlet parameters above the critical point of water, i.e., supercritical water-cooled reactors (SCWRs) have to be designed. This path of increasing thermal efficiency is considered as a conventional way that coal-fired power plants followed more than 50 years ago. Therefore, an objective of the current paper is a study on neutronics and thermalhydraulics characteristics of a generic 1200-MWel pressure-channel (PCh) SCWR. Standard neutronics codes DRAGON and DONJON have been coupled with a new thermalhydraulics code developed based on the latest empirical heat-transfer correlation, which allowed for more accurate estimation of basic characteristics of a PCh SCWR. In addition, the computational fluid dynamics (CFD) Fluent code has been used for better understanding of the specifics of heat transfer in supercritical water. Future studies will be dedicated to materials and fuels testing in an in-pile supercritical water loop and developing passive safety systems.
Volume 6: Beyond Design Basis Events; Student Paper Competition | 2013
Amjad Farah; Glenn Harvel; Igor Pioro
Generation-IV SuperCritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45–50% owing to the reactor’s high pressures and outlet temperatures. The behavior of supercritical water however, is not well understood and most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations which do not capture the multi-dimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime.Computational Fluid Dynamics (CFD) is a numerical approach to model fluids in multidimensional space using the Navier-Stokes equations and databases of fluid properties to arrive at a full simulation of a fluid dynamics and heat transfer system.In this work, the CFD code, FLUENT-12, is used with associated software such as Gambit and NIST REFPROP to predict the Heat Transfer Coefficients at the wall and corresponding wall temperature profiles inside vertical bare tubes with SuperCritical Water (SCW) as the cooling medium. The numerical results are compared with experimental data and 1-D models represented by existing empirical correlations.Analysis of the individual heat-transfer regimes is conducted using an axisymmetric 2-D model of tubes of various lengths and composed of different nodalizations along the heated length. Wall temperatures and heat transfer coefficients were analyzed to select the best model for each region (below, at and above the pseudocritical region). Two turbulent models were used in the process: k-e and k-ω, with variations in the sub-model parameters such as viscous heating, thermal effects, and low-Reynolds number correction.Results of the analysis show a fit of ±10% for the wall temperatures using the SST k-ω model in the deteriorated heat transfer regime and less than ±5% for the normal heat transfer regime. The accuracy of the model is higher than any empirical correlation tested in the mentioned regimes, and provides additional information about the multidimensional effects between the bulk-fluid and wall temperatures.Copyright
18th International Conference on Nuclear Engineering: Volume 2 | 2010
Eugene Saltanov; Wargha Peiman; Amjad Farah; Krysten King; Maria Naidin; Igor Pioro
Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 40-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30–35% to about 45–48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs. SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. To achieve higher thermal efficiency Nuclear Steam Reheat (NSR) has to be introduced inside a reactor. Currently, all supercritical turbines at thermal power plants have a steam-reheat option. In the 60’s and 70’s, Russia, the USA and some other countries have developed and implemented the nuclear steam reheat at subcritical-pressure experimental boiling reactors. There are some papers, mainly published in the open Russian literature, devoted to this important experience. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. It is obvious that implementation of the nuclear steam reheat at subcritical pressures in pressure-tube reactors is easier task than that in pressure-vessel reactors. Some design features related to the NSR are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors with the nuclear steam reheat is feasible and significant benefits can be expected over other thermal-energy systems.Copyright
Volume 5: Innovative Nuclear Power Plant Design and New Technology Application; Student Paper Competition | 2014
Marija Miletic; Wargha Peiman; Amjad Farah; Jeffrey Samuel; Alexey Dragunov
Nuclear power becomes more and more important in many countries worldwide as a basis for current and future electrical-energy generation. The largest group of operating Nuclear Power Plants (NPPs) equipped with water-cooled reactors (96% of all NPPs) have gross thermal efficiencies ranging from 30% and up to 36%. Such relatively low values of thermal efficiencies are due to lower pressures/temperatures at the inlet to a turbine (4.5–7.8 MPa / 257–293°C). However, modern combined-cycle power plants (Brayton gas-turbine cycle and subcritical-pressure steam Rankine cycle, fuel – natural gas) and supercritical-pressure coal-fired power plants have reached gross thermal efficiencies of 62% and 55%, respectively. Therefore, next generation or Generation IV NPPs with water-cooled reactors should have thermal efficiencies as close as possible to those of modern thermal power plants.A significant increase in thermal efficiencies of water-cooled NPPs can be possible only due to increasing turbine inlet parameters above the critical point of water, i.e., SuperCritical Water-cooled Reactors (SCWRs) have to be designed. This path of the thermal-efficiency increasing is considered as a conventional way through which coal-fired power plants gone more than 50 years ago.Therefore, an objective of the current paper is a study on neutronics and thermalhydraulics characteristics of a generic 1200-MWel Pressure-Channel (PCh) SCWR.Standard neutronics codes DRAGON and DONJON have been coupled with a new thermalhydraulic code developed based on the latest empirical heat-transfer correlation, which allowed for more accurate estimation of basic characteristics of a PCh SCWR. In addition, the CFD Fluent code has been used for better understanding of specifics of heat transfer in supercritical water.Future studies will be dedicated to materials and fuels testing in an in-pile supercritical-water loop and developing passive-safety systems.Copyright
Volume 5: Fusion Engineering; Student Paper Competition; Design Basis and Beyond Design Basis Events; Simple and Combined Cycles | 2012
Amjad Farah; Patrick Haines; Glenn Harvel; Igor Pioro
The ability to use FLUENT 12 or other CFD software to accurately model supercritical water flow through various geometries in diabatic conditions is integral to research involving coal-fired power plants as well as Supercritical Water-cooled Reactors (SCWR). The cost and risk associated with constructing supercritical water test loops are far too great to use in a university setting. Previous work has shown that FLUENT 12, specifically realizable k-e model, can reasonably predict the bulk and wall temperature distributions of externally heated vertical bare tubes for cases with relatively low heat and mass fluxes. However, sizeable errors were observed for other cases, often those which involved large heat fluxes that produce deteriorated heat transfer (DHT) regimes, which involves a reduction in the rate of heat transfer between the wall and the fluid, and therefore a rise in wall temperature. These errors were believed to be caused by FLUENT’s over-estimation of changes in thermal physical properties of the fluid which occur around the pseudocritical point.The goal of this research is to gain a more complete understanding of how FLUENT 12 models supercritical water cases and where errors can be expected to occur. One control case is selected where expected changes in bulk and wall temperatures occur and they match empirical correlations’ predictions, and the operating parameters are varied individually to gauge their effect on FLUENT’s solution. The model used is the realizable k-e, and the parameters altered are inlet pressure, mass flux, heat flux, and inlet temperature.As a result of this work, under supercritical conditions, the only finite limitations found in the k-e model are in the mass flux which is predicted correctly above 300 kg/m2s, and in the temperature and related physical properties of water where they exceed the limitation of the fluid properties in the fluid database.© 2012 ASME
18th International Conference on Nuclear Engineering: Volume 2 | 2010
Amjad Farah; Krysten King; Sahil Gupta; Sarah Mokry; Wargha Peiman; Igor Pioro
This paper presents an extensive study of heat-transfer correlations applicable to supercritical-water flow in vertical bare tubes. A comprehensive dataset was collected from 33 papers by 27 authors, including more than 125 graphs and wide ranges of parameters. The parameters ranges were as follows: pressures 22.5–34.5 MPa, inlet temperatures 85–350°C, mass fluxes 250–3400 kg/m2 s, heat fluxes 75–5,400 kW/m2 ), tube heated lengths 0.6–27.4 m, and tube inside diameters 2–36 mm. This combined dataset was then investigated and analyzed. Heat Transfer Coefficients (HTCs) and wall temperatures were calculated using various existing correlations and compared to the corresponding experimental results. Three correlations were used in this comparison: Bishop et al., Mokry et al. and modified Swenson et al. The main objective of this study was to select the best supercritical-water bare-tube correlation for HTC calculations in: 1) fuel bundles of SuperCritical Water-cooled Reactors (SCWRs) as a preliminary and conservative approach; 2) heat exchangers in case of indirect-cycle SCW Nuclear Power Plants (NPPs); and 3) heat exchangers in case of hydrogen co-generation at SCW NPPs from SCW side. From the beginning, all these three correlations were compared to the Kirillov et al. vertical bare-tube dataset. However, this dataset has a limited range of operating conditions in terms of a pressure (only one pressure value of 24 MPa) and one inside diameter (only 10 mm). Therefore, these correlations were compared with other datasets, which have a much wider range of operating conditions. The comparison showed that in most cases, the Bishop et al. correlation deviates significantly from the experimental data within the pseudocritical region and actually, underestimates the temperature at most times. On the other hand, the Mokry et al. and modified Swenson et al. correlations showed a relatively better fit within the most operating conditions. In general, the modified Swenson et al. correlation showed slightly better fit with the experimental data than other two correlations.Copyright
18th International Conference on Nuclear Engineering: Volume 2 | 2010
Krysten King; Amjad Farah; Sahil Gupta; Sarah Mokry; Igor Pioro
Many heat-transfer correlations exist for bare tubes cooled with SuperCritical Water (SCW). However, there is very few correlations that describe SCW heat transfer in bundles. Due to the lack of extensive data on bundles, a limited dataset on heat transfer in a SCW-cooled bundle was studied and analyzed using existing bare-tube correlations to find the best-fit correlation. This dataset was obtained by Razumovskiy et al. (National Technical University of Ukraine “KPI”) in SCW flowing upward in a vertical annular channel (1-rod channel) and tight 3-rod bundle consisting of tubes of 5.2-mm outside diameter and 485-mm heated length. The heat-transfer data were obtained at pressures of 22.5, 24.5, and 27.5 MPa, mass flux within a range from 800 to 3000 kg/m2 s, inlet temperature from 125 to 352°C, outlet temperature up to 372°C and heat flux up to 4.6 MW/m2 . The objective of this study is to compare bare-tube SCW heat-transfer correlations with the data on 1- and 3-rod bundles. This work is in support of SuperCritical Water-cooled Reactors (SCWRs) as one of the six concepts of Generation-IV nuclear systems. SCWRs will operate at pressures of ∼25MPa and inlet temperatures of 350°C.© 2010 ASME
18th International Conference on Nuclear Engineering: Volume 2 | 2010
Sarah Mokry; Sahil Gupta; Amjad Farah; Krysten King; Igor Pioro
In support of developing SuperCritical Water-cooled Reactors (SCWRs), studies are currently being conducted for heat-transfer at supercritical conditions. This paper presents an analysis of heat-transfer to SuperCritical Water (SCW) flowing in bare vertical tubes as a first step towards thermohydraulic calculations in a fuel-channel. A large set of experimental data, obtained in Russia, was analyzed. Two updated heat-transfer correlations for forced convective heat transfer in the normal heat transfer regime to SCW flowing in a bare vertical tube were developed. It is expected that the next generation of water-cooled nuclear reactors will operate at supercritical pressures (∼25 MPa) with high coolant temperatures (350–625°C). Currently, there are no experimental datasets for heat transfer from power reactor fuel bundles to the fuel coolant (water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations obtained with bare tube data can be used as a conservative approach. The analyzed experimental dataset was obtained for SCW flowing upward in a 4-m-long vertical bare tube. The data was collected at pressures of about 24 MPa for several combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudocritical temperature. The values for mass flux ranged from 200–1500 kg/m2 s, for heat flux up to 1250 kW/m2 and inlet temperatures from 320–350°C. The Mokry et al. correlation was developed as a Dittus-Boelter-type correlation, with thermophysical properties taken at bulk-fluid temperatures. Alternatively, the Gupta et al. correlation was developed based on the Swenson et al. approach, where the majority of thermophysical properties are taken at the wall temperature. An analysis of the two updated heat-transfer correlations is presented in this paper. Both correlations demonstrated a good fit (±25% for Heat Transfer Coefficient (HTC) values and ±15% for calculated wall temperatures) for the analyzed dataset. Thus, these correlations can be used for preliminary HTC calculations in SCWR fuel bundles as a conservative approach, for SCW heat exchangers, for future comparisons with other independent datasets and for the verification of computer codes for SCWR core thermohydraulics.Copyright
Nuclear Engineering and Design | 2011
Sarah Mokry; Igor Pioro; Amjad Farah; Krysten King; Sahil Gupta; Wargha Peiman; Pavel Kirillov