Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amjad P. Khan is active.

Publication


Featured researches published by Amjad P. Khan.


Nature | 2009

Metabolomic Profiles Delineate Potential Role for Sarcosine in Prostate Cancer Progression

Arun Sreekumar; Laila M. Poisson; Thekkelnaycke M. Rajendiran; Amjad P. Khan; Qi Cao; Jindan Yu; Bharathi Laxman; Rohit Mehra; Robert J. Lonigro; Yong Li; Mukesh K. Nyati; Aarif Ahsan; Shanker Kalyana-Sundaram; Bo Han; Xuhong Cao; Jaeman Byun; Gilbert S. Omenn; Debashis Ghosh; Subramaniam Pennathur; Danny Alexander; Alvin Berger; Jeffrey R. Shuster; John T. Wei; Sooryanarayana Varambally; Christopher Beecher; Arul M. Chinnaiyan

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.


Nature | 2012

The mutational landscape of lethal castration-resistant prostate cancer

Catherine S. Grasso; Yi Mi Wu; Dan R. Robinson; Xuhong Cao; Saravana M. Dhanasekaran; Amjad P. Khan; Michael J. Quist; Xiaojun Jing; Robert J. Lonigro; J. Chad Brenner; Irfan A. Asangani; Bushra Ateeq; Sang Y. Chun; Javed Siddiqui; Lee Sam; Matt Anstett; Rohit Mehra; John R. Prensner; Nallasivam Palanisamy; Gregory A Ryslik; Fabio Vandin; Benjamin J. Raphael; Lakshmi P. Kunju; Daniel R. Rhodes; Kenneth J. Pienta; Arul M. Chinnaiyan; Scott A. Tomlins

Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.


Nature Medicine | 2007

Molecular imaging of Akt kinase activity.

Limin Zhang; Kuei C. Lee; Mahaveer S. Bhojani; Amjad P. Khan; Alla Shilman; Eric C. Holland; Brian D. Ross; Alnawaz Rehemtulla

The serine/threonine kinase Akt mediates mitogenic and anti-apoptotic responses that result from activation of multiple signaling cascades. It is considered a key determinant of tumor aggressiveness and is a major target for anticancer drug development. Here, we describe a new reporter molecule whose bioluminescence activity within live cells and in mice can be used to measure Akt activity. Akt activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to activation or inhibition of receptor tyrosine kinase, inhibition of phosphoinositide 3-kinase, or direct inhibition of Akt. The results provide unique insights into the pharmacokinetics and pharmacodynamics of agents that modulate Akt activity, revealing the usefulness of this reporter for rapid dose and schedule optimization in the drug development process.


Molecular & Cellular Proteomics | 2010

Quantitative Proteomic Profiling of Prostate Cancer Reveals a Role for miR-128 in Prostate Cancer

Amjad P. Khan; Laila M. Poisson; Vadiraja B. Bhat; Damian Fermin; Rong Zhao; Shanker Kalyana-Sundaram; George Michailidis; Alexey I. Nesvizhskii; Gilbert S. Omenn; Arul M. Chinnaiyan; Arun Sreekumar

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of biomarkers of cancer invasion and disease aggressiveness. Although alterations in gene expression have been extensively quantified during neoplastic progression, complementary analyses of proteomic changes have been limited. Here we interrogate the proteomic alterations in a cohort of 15 prostate-derived tissues that included five each from adjacent benign prostate, clinically localized prostate cancer, and metastatic disease from distant sites. The experimental strategy couples isobaric tags for relative and absolute quantitation with multidimensional liquid phase peptide fractionation followed by tandem mass spectrometry. Over 1000 proteins were quantified across the specimens and delineated into clinically localized and metastatic prostate cancer-specific signatures. Included in these class-specific profiles were both proteins that were known to be dysregulated during prostate cancer progression and new ones defined by this study. Enrichment analysis of the prostate cancer-specific proteomic signature, to gain insight into the functional consequences of these alterations, revealed involvement of miR-128-a/b regulation during prostate cancer progression. This finding was validated using real time PCR analysis for microRNA transcript levels in an independent set of 15 clinical specimens. miR-128 levels were elevated in benign prostate epithelial cell lines compared with invasive prostate cancer cells. Knockdown of miR-128 induced invasion in benign prostate epithelial cells, whereas its overexpression attenuated invasion in prostate cancer cells. Taken together, our profiles of the proteomic alterations of prostate cancer progression revealed miR-128 as a potentially important negative regulator of prostate cancer cell invasion.


Clinical Cancer Research | 2007

Prospective Early Response Imaging Biomarker for Neoadjuvant Breast Cancer Chemotherapy

Kuei C. Lee; Bradford A. Moffat; Anne F. Schott; Rachel Layman; Steven Ellingworth; Rebecca Juliar; Amjad P. Khan; Mark A. Helvie; Charles R. Meyer; Thomas L. Chenevert; Alnawaz Rehemtulla; Brian D. Ross

Purpose: The American Cancer Society estimates that in 2006, 212,920 women will be diagnosed with breast cancer and that 40,970 women will die from the disease. The development of more efficacious chemotherapies has improved outcomes, but the rapid assessment of clinical benefit from these agents remains challenging. In breast cancer patients receiving neoadjuvant chemotherapy, treatment response is traditionally assessed by physical examination and volumetric-based measurements, which are subjective and require macroscopic changes in tumor morphology. In this study, we evaluate the feasibility of using diffusion magnetic resonance imaging (MRI) as a reliable and quantitative measure for the early assessment of response in a breast cancer model. Experimental Design: Mice implanted with human breast cancer (MX-1) were treated with cyclophosphamide and evaluated using diffusion MRI and growth kinetics. Histologic analyses using terminal nucleotidyl transferase–mediated nick end labeling and H&E were done on tumor samples for correlation with imaging results. Results: Cyclophosphamide treatment resulted in a significant reduction in tumor volumes compared with controls. The mean apparent diffusion change for treated tumors at days 4 and 7 posttreatment was 44 ± 5% and 94 ± 7%, respectively, which was statistically greater (P < 0.05) than the control tumors at the same time intervals. The median time-to-progression for control and treated groups was 11 and 32 days, respectively (P < 0.05). Conclusion: Diffusion MRI was shown to detect early changes in the tumor microenvironment, which correlated with standard measures of tumor response as well as overall outcome. Moreover, these findings show the feasibility of using diffusion MRI for assessing treatment response of a breast tumor model in a neoadjuvant setting.


Nature Medicine | 2015

Targeting the MLL complex in castration resistant prostate cancer

Rohit Malik; Amjad P. Khan; Irfan A. Asangani; Marcin Cieślik; John R. Prensner; Xiaoju Wang; Matthew K. Iyer; Xia Jiang; Dmitry Borkin; June Escara-Wilke; Rachell Stender; Yi-Mi Wu; Yashar S. Niknafs; Xiaojun Jing; Yuanyuan Qiao; Nallasivam Palanisamy; Lakshmi P. Kunju; Pranathi Meda Krishnamurthy; Anastasia K. Yocum; Dattatreya Mellacheruvu; Alexey I. Nesvizhskii; Xuhong Cao; Saravana M. Dhanasekaran; Felix Y. Feng; Jolanta Grembecka; Tomasz Cierpicki; Arul M. Chinnaiyan

Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Although prior work has focused on targeting AR directly, co-activators of AR signaling, which may represent new therapeutic targets, are relatively underexplored. Here we demonstrate that the mixed-lineage leukemia protein (MLL) complex, a well-known driver of MLL fusion–positive leukemia, acts as a co-activator of AR signaling. AR directly interacts with the MLL complex via the menin–MLL subunit. Menin expression is higher in CRPC than in both hormone-naive prostate cancer and benign prostate tissue, and high menin expression correlates with poor overall survival of individuals diagnosed with prostate cancer. Treatment with a small-molecule inhibitor of menin–MLL interaction blocks AR signaling and inhibits the growth of castration-resistant tumors in vivo in mice. Taken together, this work identifies the MLL complex as a crucial co-activator of AR and a potential therapeutic target in advanced prostate cancer.


Annals of Human Genetics | 2001

Angiotensin converting enzyme insertion allele in relation to high altitude adaptation

M. A. Qadar Pasha; Amjad P. Khan; Ratan Kumar; S. K. Grover; Rekhbala Ram; Tsering Norboo; K. K. Srivastava; W. Selvamurthy; S. K. Brahmachari

Angiotensin converting enzyme (ACE) gene I/D polymorphism has been associated with high altitude (HA) disorders as well as physical performance. We, however, envisage that the polymorphism may be associated with adaptation to the hypobaric hypoxia of altitude, thus facilitating physical performance. For this purpose, three unrelated adult male groups, namely (1) the Ladakhis (HLs), who reside at and above a height of 3600 m, (2) lowlanders, who migrated to Ladakh (MLLs), and (3) resident lowlanders (LLs), have been investigated. The HLs had significantly (p < 0.001) greater numbers of the II homozygotes and the ID heterozygotes than the DD homozygotes, the genotype distribution being 0.46, 0.43 and 0.11 for II, ID and DD genotypes respectively. The MLLs comprised 60% II homozygotes, which was higher (p < 0.001) than the HLs (46%). In the LLs, the heterozygotes were greater (p < 0.001) in number than the II and DD homozygotes. The I allele frequency was 0.72 in the MLLs, 0.67 in the HLs and 0.55 in the LLs. Polymorphism study suggested that the II genotype could be associated with altitude adaptation, which might influence physical efficiency.


Clinical Cancer Research | 2007

Noninvasive Molecular Imaging Sheds Light on the Synergy between 5-Fluorouracil and TRAIL/Apo2L for Cancer Therapy

Kuei C. Lee; Daniel A. Hamstra; Mahaveer S. Bhojani; Amjad P. Khan; Brian D. Ross; Alnawaz Rehemtulla

Purpose: In a previous report, a recombinant luciferase reporter, activated during apoptosis via caspase-3 cleavage, was developed for imaging of apoptosis using bioluminescence. The ability to noninvasively image apoptosis in vivo could dramatically benefit the preclinical development of therapeutics targeting the apoptotic pathway. In this study, we examined the use of 5-fluorouracil (5-FU) for sensitizing D54 tumors to tumor necrosis factor α–related apoptosis–inducing ligand (TRAIL) therapy by monitoring apoptotic activity in vivo using bioluminescence imaging. Experimental Design: Using our apoptosis imaging platform and diffusion magnetic resonance imaging (MRI), we monitored the antitumor effects of 5-FU, TRAIL, and 5-FU + TRAIL using D54 xenografts. Additionally, volumetric and histologic analyses were done for correlation with findings from bioluminescence imaging and diffusion MRI. Results: Bioluminescence imaging showed that therapy with TRAIL alone produced an initial 400% increase in apoptotic activity that rapidly diminished during the 10-day treatment period despite continued therapy. In contrast, concomitant 5-FU and TRAIL therapy elicited an apoptotic response that was sustained throughout the entire therapeutic course. Using diffusion MRI, an enhanced tumor response was detected when concomitant therapy was given versus TRAIL-alone therapy. Last, concomitant therapy resulted in a prolonged growth delay (∼9 days) compared with TRAIL alone (∼4 days). Conclusion: We showed that concomitant 5-FU and TRAIL therapy indeed enhanced apoptotic activity in vivo, which translated into greater tumor control. Moreover, this technique sheds light on the synergy of 5-FU and TRAIL as evidenced by differences in the temporal activation of caspase-3 resulting from the different therapeutic regimens.


Thorax | 2006

Susceptibility to high altitude pulmonary oedema: role of ACE and ET-1 polymorphisms

R Charu; Tsering Stobdan; Rekhbala Ram; Amjad P. Khan; M A Qadar Pasha; Tsering Norboo; Farhat Afrin

High altitude pulmonary oedema (HAPE) is a severe form of altitude illness that develops in travellers on rapid ascent to or physical exertion at altitudes of >2500 m.1 The disease is characterised by pulmonary hypertension, uneven vasoconstriction, and overperfusion which is thought to cause stress failure of pulmonary capillaries leading to alveolar flooding.1 Since uneven pulmonary vasoconstriction appears to play an important part in the development of HAPE, the genes involved in maintaining pulmonary vascular tone—for example, angiotensin converting enzyme (ACE) and endothelin-1 (ET-1)—could be possible candidates for HAPE. Earlier studies showed that the selective pressure of hypobaric hypoxia acted in favour of those alleles of ACE and ET-1 which were beneficial in maintaining a healthy state at high altitude.2,3 On the other hand, unfavourable alleles are likely to contribute to the susceptibility to HAPE. This hypothesis lends support to an earlier report on the allelic variants of endothelial nitric oxide synthase gene.4 We therefore investigated ACE insertion/deletion (I/D) (GenBank accession no X62855) and ET-1 5′-untranslated region (UTR) microsatellite …


Proteomics | 2010

Development of selected reaction monitoring-MS methodology to measure peptide biomarkers in prostate cancer

Anastasia K. Yocum; Amjad P. Khan; Rong Zhao; Arul M. Chinnaiyan

Prostate cancer is a leading cause of cancer‐related death. The current modality of diagnosis, the measurement of serum PSA, not only suffers from lack of specificity, but does not distinguish clinical cases in which current treatment measures would be most successful, i.e. aggressive, life‐threatening tumors. A multiplexed MS methodology, selected reaction monitoring‐MS/MS coupled with stable isotope dilution (SID), was developed and tested in both cells lines and clinical tissue samples. Standard curves were generated for two peptides representing PSA and one peptide from each of two additional orthogonally validated biomarkers, AMACR and EZH2. The standard curves show high reproducibility, sensitivity, and good linearity. All four peptides were then measured in six clinically relevant cell lines and are in agreement with the biochemical characteristics of each individual cell line. The SID selected reaction monitoring‐MS/MS methodology was then transferred to tissue samples, in which the assay shows potential to differentiate benign disease from localized cancer and localized cancer from aggressive metastatic disease. These results establish the preliminary development of a rational targeted MS platform that strives to bridge the gap between discovery and validation of biomarkers for the detection of prostate cancer.

Collaboration


Dive into the Amjad P. Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuhong Cao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Arun Sreekumar

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Rohit Mehra

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John T. Wei

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge