Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ammar Abdo is active.

Publication


Featured researches published by Ammar Abdo.


Journal of Chemical Information and Modeling | 2010

Ligand-based virtual screening using bayesian networks

Ammar Abdo; Beining Chen; Christoph Mueller; Naomie Salim; Peter Willett

A Bayesian inference network (BIN) provides an interesting alternative to existing tools for similarity-based virtual screening. The BIN is particularly effective when the active molecules being sought have a high degree of structural homogeneity but has been found to perform less well with structurally heterogeneous sets of actives. In this paper, we introduce an alternative network model, called a Bayesian belief network (BBN), that seeks to overcome this limitation of the BIN approach. Simulated virtual screening experiments with the MDDR, WOMBAT and MUV data sets show that the BIN and BBN methods allow effective screening searches to be carried out. However, the results obtained are not obviously superior to those obtained using a much simpler approach that is based on the use of the Tanimoto coefficient and of the square roots of fragment occurrence frequencies.


Journal of Chemical Information and Modeling | 2011

New fragment weighting scheme for the bayesian inference network in ligand-based virtual screening

Ammar Abdo; Naomie Salim

Many of the conventional similarity methods assume that molecular fragments that do not relate to biological activity carry the same weight as the important ones. One possible approach to this problem is to use the Bayesian inference network (BIN), which models molecules and reference structures as probabilistic inference networks. The relationships between molecules and reference structures in the Bayesian network are encoded using a set of conditional probability distributions, which can be estimated by the fragment weighting function, a function of the frequencies of the fragments in the molecule or the reference structure as well as throughout the collection. The weighting function combines one or more fragment weighting schemes. In this paper, we have investigated five different weighting functions and present a new fragment weighting scheme. Later on, these functions were modified to combine the new weighting scheme. Simulated virtual screening experiments with the MDL Drug Data Report (23) and maximum unbiased validation data sets show that the use of new weighting scheme can provide significantly more effective screening when compared with the use of current weighting schemes.


ChemMedChem | 2009

Similarity-based virtual screening with a bayesian inference network.

Ammar Abdo; Naomie Salim

An inference network model for molecular similarity searching: The similarity search problem is modeled using inference or evidential reasoning under uncertainty. The inference network model treats similarity searching as an evidential reasoning process in which multiple sources of evidence about compounds and reference structures are combined to estimate resemblance probabilities.


Journal of Cheminformatics | 2012

Voting-based consensus clustering for combining multiple clusterings of chemical structures.

Faisal Saeed; Naomie Salim; Ammar Abdo

BackgroundAlthough many consensus clustering methods have been successfully used for combining multiple classifiers in many areas such as machine learning, applied statistics, pattern recognition and bioinformatics, few consensus clustering methods have been applied for combining multiple clusterings of chemical structures. It is known that any individual clustering method will not always give the best results for all types of applications. So, in this paper, three voting and graph-based consensus clusterings were used for combining multiple clusterings of chemical structures to enhance the ability of separating biologically active molecules from inactive ones in each cluster.ResultsThe cumulative voting-based aggregation algorithm (CVAA), cluster-based similarity partitioning algorithm (CSPA) and hyper-graph partitioning algorithm (HGPA) were examined. The F-measure and Quality Partition Index method (QPI) were used to evaluate the clusterings and the results were compared to the Ward’s clustering method. The MDL Drug Data Report (MDDR) dataset was used for experiments and was represented by two 2D fingerprints, ALOGP and ECFP_4. The performance of voting-based consensus clustering method outperformed the Ward’s method using F-measure and QPI method for both ALOGP and ECFP_4 fingerprints, while the graph-based consensus clustering methods outperformed the Ward’s method only for ALOGP using QPI. The Jaccard and Euclidean distance measures were the methods of choice to generate the ensembles, which give the highest values for both criteria.ConclusionsThe results of the experiments show that consensus clustering methods can improve the effectiveness of chemical structures clusterings. The cumulative voting-based aggregation algorithm (CVAA) was the method of choice among consensus clustering methods.


Journal of Computer-aided Molecular Design | 2012

Ligand expansion in ligand-based virtual screening using relevance feedback

Ammar Abdo; Faisal Saeed; Hentabli Hamza; Ali Ahmed; Naomie Salim

Query expansion is the process of reformulating an original query to improve retrieval performance in information retrieval systems. Relevance feedback is one of the most useful query modification techniques in information retrieval systems. In this paper, we introduce query expansion into ligand-based virtual screening (LBVS) using the relevance feedback technique. In this approach, a few high-ranking molecules of unknown activity are filtered from the outputs of a Bayesian inference network based on a single ligand molecule to form a set of ligand molecules. This set of ligand molecules is used to form a new ligand molecule. Simulated virtual screening experiments with the MDL Drug Data Report and maximum unbiased validation data sets show that the use of ligand expansion provides a very simple way of improving the LBVS, especially when the active molecules being sought have a high degree of structural heterogeneity. However, the effectiveness of the ligand expansion is slightly less when structurally-homogeneous sets of actives are being sought.


Journal of Chemical Information and Modeling | 2014

Prediction of new bioactive molecules using a Bayesian belief network.

Ammar Abdo; Valérie Leclère; Philippe Jacques; Naomie Salim; Maude Pupin

Natural products and synthetic compounds are a valuable source of new small molecules leading to novel drugs to cure diseases. However identifying new biologically active small molecules is still a challenge. In this paper, we introduce a new activity prediction approach using Bayesian belief network for classification (BBNC). The roots of the network are the fragments composing a compound. The leaves are, on one side, the activities to predict and, on another side, the unknown compound. The activities are represented by sets of known compounds, and sets of inactive compounds are also used. We calculated a similarity between an unknown compound and each activity class. The more similar activity is assigned to the unknown compound. We applied this new approach on eight well-known data sets extracted from the literature and compared its performance to three classical machine learning algorithms. Experiments showed that BBNC provides interesting prediction rates (from 79% accuracy for high diverse data sets to 99% for low diverse ones) with a short time calculation. Experiments also showed that BBNC is particularly effective for homogeneous data sets but has been found to perform less well with structurally heterogeneous sets. However, it is important to stress that we believe that using several approaches whenever possible for activity prediction can often give a broader understanding of the data than using only one approach alone. Thus, BBNC is a useful addition to the computational chemists toolbox.


Journal of Cheminformatics | 2014

Condorcet and borda count fusion method for ligand-based virtual screening

Ali Ahmed; Faisal Saeed; Naomie Salim; Ammar Abdo

BackgroundIt is known that any individual similarity measure will not always give the best recall of active molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening approaches can be enhanced by using data fusion. Data fusion can be implemented using two different approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking of the compounds in the database.ResultsThe Condorcet fusion method was examined. This approach combines the outputs of similarity searches from eleven association and distance similarity coefficients, and then the winner measure for each class of molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints.ConclusionsSimulated virtual screening experiments with the standard two data sets show that the use of Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought.


The Scientific World Journal | 2012

Ligand-Based Virtual Screening Using Bayesian Inference Network and Reweighted Fragments

Ali Ahmed; Ammar Abdo; Naomie Salim

Many of the similarity-based virtual screening approaches assume that molecular fragments that are not related to the biological activity carry the same weight as the important ones. This was the reason that led to the use of Bayesian networks as an alternative to existing tools for similarity-based virtual screening. In our recent work, the retrieval performance of the Bayesian inference network (BIN) was observed to improve significantly when molecular fragments were reweighted using the relevance feedback information. In this paper, a set of active reference structures were used to reweight the fragments in the reference structure. In this approach, higher weights were assigned to those fragments that occur more frequently in the set of active reference structures while others were penalized. Simulated virtual screening experiments with MDL Drug Data Report datasets showed that the proposed approach significantly improved the retrieval effectiveness of ligand-based virtual screening, especially when the active molecules being sought had a high degree of structural heterogeneity.


Journal of Biomolecular Screening | 2011

Implementing Relevance Feedback in Ligand-Based Virtual Screening Using Bayesian Inference Network

Ammar Abdo; Naomie Salim; Ali Ahmed

Recently, the use of the Bayesian network as an alternative to existing tools for similarity-based virtual screening has received noticeable attention from researchers in the chemoinformatics field. The main aim of the Bayesian network model is to improve the retrieval effectiveness of similarity-based virtual screening. To this end, different models of the Bayesian network have been developed. In our previous works, the retrieval performance of the Bayesian network was observed to improve significantly when multiple reference structures or fragment weightings were used. In this article, the authors enhance the Bayesian inference network (BIN) using the relevance feedback information. In this approach, a few high-ranking structures of unknown activity were filtered from the outputs of BIN, based on a single active reference structure, to form a set of active reference structures. This set of active reference structures was used in two distinct techniques for carrying out such BIN searching: reweighting the fragments in the reference structures and group fusion techniques. Simulated virtual screening experiments with three MDL Drug Data Report data sets showed that the proposed techniques provide simple ways of enhancing the cost-effectiveness of ligand-based virtual screening searches, especially for higher diversity data sets.


Molecular Informatics | 2013

Information Theory and Voting Based Consensus Clustering for Combining Multiple Clusterings of Chemical Structures

Faisal Saeed; Naomie Salim; Ammar Abdo

Many consensus clustering methods have been applied in different areas such as pattern recognition, machine learning, information theory and bioinformatics. However, few methods have been used for chemical compounds clustering. In this paper, an information theory and voting based algorithm (Adaptive Cumulative Voting‐based Aggregation Algorithm A‐CVAA) was examined for combining multiple clusterings of chemical structures. The effectiveness of clusterings was evaluated based on the ability of the clustering method to separate active from inactive molecules in each cluster, and the results were compared with Ward’s method. The chemical dataset MDL Drug Data Report (MDDR) and the Maximum Unbiased Validation (MUV) dataset were used. Experiments suggest that the adaptive cumulative voting‐based consensus method can improve the effectiveness of combining multiple clusterings of chemical structures.

Collaboration


Dive into the Ammar Abdo's collaboration.

Top Co-Authors

Avatar

Naomie Salim

Community College of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Faisal Saeed

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamza Hentabli

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Hentabli Hamza

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beining Chen

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge