Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ammar Adam is active.

Publication


Featured researches published by Ammar Adam.


Journal of Medicinal Chemistry | 2013

Discovery of a Novel Class of Dimeric Smac Mimetics as Potent IAP Antagonists Resulting in a Clinical Candidate for the Treatment of Cancer (AZD5582)

Edward J. Hennessy; Ammar Adam; Brian Aquila; Castriotta Lm; Donald J. Cook; Maureen Hattersley; Alexander Hird; Huntington C; Victor Kamhi; Laing Nm; Danyang Li; Terry MacIntyre; Omer Ca; Oza; Patterson T; Repik G; Michael T. Rooney; Jamal C. Saeh; Li Sha; Melissa Vasbinder; Haiyun Wang; Whitston D

A series of dimeric compounds based on the AVPI motif of Smac were designed and prepared as antagonists of the inhibitor of apoptosis proteins (IAPs). Optimization of cellular potency, physical properties, and pharmacokinetic parameters led to the identification of compound 14 (AZD5582), which binds potently to the BIR3 domains of cIAP1, cIAP2, and XIAP (IC50 = 15, 21, and 15 nM, respectively). This compound causes cIAP1 degradation and induces apoptosis in the MDA-MB-231 breast cancer cell line at subnanomolar concentrations in vitro. When administered intravenously to MDA-MB-231 xenograft-bearing mice, 14 results in cIAP1 degradation and caspase-3 cleavage within tumor cells and causes substantial tumor regressions following two weekly doses of 3.0 mg/kg. Antiproliferative effects are observed with 14 in only a small subset of the over 200 cancer cell lines examined, consistent with other published IAP inhibitors. As a result of its in vitro and in vivo profile, 14 was nominated as a candidate for clinical development.


Clinical Cancer Research | 2015

The MET inhibitor AZD6094 (Savolitinib, HMPL-504) induces regression in papillary renal cell carcinoma patient derived xenograft models

Alwin Schuller; Evan Barry; Rhys D.O. Jones; Ryan Henry; Melanie M. Frigault; Garry Beran; David Linsenmayer; Maureen Hattersley; Aaron Smith; Joanne Wilson; Stefano Cairo; Olivier Deas; Delphine Nicolle; Ammar Adam; Michael Zinda; Corinne Reimer; Stephen Fawell; Edwin Clark; Celina D'Cruz

Purpose: Papillary renal cell carcinoma (PRCC) is the second most common cancer of the kidney and carries a poor prognosis for patients with nonlocalized disease. The HGF receptor MET plays a central role in PRCC and aberrations, either through mutation, copy number gain, or trisomy of chromosome 7 occurring in the majority of cases. The development of effective therapies in PRCC has been hampered in part by a lack of available preclinical models. We determined the pharmacodynamic and antitumor response of the selective MET inhibitor AZD6094 in two PRCC patient-derived xenograft (PDX) models. Experimental Design: Two PRCC PDX models were identified and MET mutation status and copy number determined. Pharmacodynamic and antitumor activity of AZD6094 was tested using a dose response up to 25 mg/kg daily, representing clinically achievable exposures, and compared with the activity of the RCC standard-of-care sunitinib (in RCC43b) or the multikinase inhibitor crizotinib (in RCC47). Results: AZD6094 treatment resulted in tumor regressions, whereas sunitinib or crizotinib resulted in unsustained growth inhibition. Pharmacodynamic analysis of tumors revealed that AZD6094 could robustly suppress pMET and the duration of target inhibition was dose related. AZD6094 inhibited multiple signaling nodes, including MAPK, PI3K, and EGFR. Finally, at doses that induced tumor regression, AZD6094 resulted in a dose- and time-dependent induction of cleaved PARP, a marker of cell death. Conclusions: Data presented provide the first report testing therapeutics in preclinical in vivo models of PRCC and support the clinical development of AZD6094 in this indication. Clin Cancer Res; 21(12); 2811–9. ©2015 AACR.


Oncotarget | 2016

Acquired savolitinib resistance in non-small cell lung cancer arises via multiple mechanisms that converge on MET-independent mTOR and MYC activation

Ryan Henry; Evan Barry; Lillian Castriotta; Brendon Ladd; Aleksandra Markovets; Garry Beran; Yongxin Ren; Feng Zhou; Ammar Adam; Michael Zinda; Corinne Reimer; Weiguo Qing; Weiguo Su; Edwin Clark; Celina M. D’Cruz; Alwin Schuller

Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. The receptor tyrosine kinase MET has been implicated as an oncogene in numerous cancer subtypes, including non-small cell lung cancer (NSCLC). Here we explore the therapeutic potential of savolitinib (volitinib, AZD6094, HMPL-504), a potent and selective MET inhibitor, in NSCLC. In vitro, savolitinib inhibits MET phosphorylation with nanomolar potency, which correlates with blockade of PI3K/AKT and MAPK signaling as well as MYC down-regulation. In vivo, savolitinib causes inhibition of these pathways and significantly decreases growth of MET-dependent xenografts. To understand resistance mechanisms, we generated savolitinib resistance in MET-amplified NSCLC cell lines and analyzed individual clones. We found that upregulation of MYC and constitutive mTOR pathway activation is a conserved feature of resistant clones that can be overcome by knockdown of MYC or dual mTORC1/2 inhibition. Lastly, we demonstrate that mechanisms of resistance are heterogeneous, arising via a switch to EGFR dependence or by a requirement for PIM signaling. This work demonstrates the efficacy of savolitinib in NSCLC and characterizes acquired resistance, identifying both known and novel mechanisms that may inform combination strategies in the clinic.


Journal of Medicinal Chemistry | 2015

Identification and Optimization of Benzimidazole Sulfonamides as Orally Bioavailable Sphingosine 1-Phosphate Receptor 1 Antagonists with in Vivo Activity.

Edward J. Hennessy; Vibha Oza; Ammar Adam; Kate Byth; Lillian Castriotta; Gurmit Grewal; Geraldine A. Hamilton; Victor Kamhi; Paula Lewis; Danyang Li; Paul Lyne; Linda Öster; Michael T. Rooney; Jamal C. Saeh; Li Sha; Qibin Su; Shengua Wen; Yafeng Xue; Bin Yang

We report here a novel series of benzimidazole sulfonamides that act as antagonists of the S1P1 receptor, identified by exploiting an understanding of the pharmacophore of a high throughput screening (HTS)-derived series of compounds described previously. Lead compound 2 potently inhibits S1P-induced receptor internalization in a cell-based assay (EC50 = 0.05 μM), but has poor physical properties and metabolic stability. Evolution of this compound through structure-activity relationship development and property optimization led to in vivo probes such as 4. However, this compound was unexpectedly found to be a potent CYP3A inducer in human hepatocytes, and thus further chemistry efforts were directed at addressing this liability. By employing a pregnane X receptor (PXR) reporter gene assay to prioritize compounds for further testing in human hepatocytes, we identified lipophilicity as a key molecular property influencing the likelihood of P450 induction. Ultimately, we have identified compounds such as 46 and 47, which demonstrate the desired S1P1 antagonist activity while having greatly reduced risk of CYP3A induction in humans. These compounds have excellent oral bioavailability in preclinical species and exhibit pharmacodynamic effects of S1P1 antagonism in several in vivo models following oral dosing. Relatively modest antitumor activity was observed in multiple xenograft models, however, suggesting that selective S1P1 antagonists would have limited utility as anticancer therapeutics as single agents.


Cancer Research | 2017

Abstract DDT01-02: AZD5991: A potent and selective macrocyclic inhibitor of Mcl-1 for treatment of hematologic cancers

Alexander Hird; J. Paul Secrist; Ammar Adam; Matthew A. Belmonte; Eric Gangl; Frank Gibbons; David Hargreaves; Jeffrey W. Johannes; Stephen L. Kazmirski; Jason Grant Kettle; Stephen E. Kurtz; Michelle Lamb; Martin J. Packer; Bo Peng; Craig Robert Stewart; Jeffrey W. Tyner; Wenzhan Yang; Qing Ye; Xiaolan Zheng; Edwin Clark

Mcl-1, a member of the Bcl/Mcl family, is a key protein involved in evasion of apoptosis in a wide variety of tumors. Its amplification and overexpression have also been implicated in innate and acquired resistance to anticancer drugs. Mcl-1 is capable of preventing induction of apoptosis, both by binding and inactivating the pro-apoptotic executioner Bcl-2 protein, Bak, as well as by sequestering other pro-apoptotic BH3-only proteins such as Bim and Noxa. AZD5991 is a rationally designed macrocycle with sub-nanomolar affinity for Mcl-1. It demonstrates all the hallmarks of a true Mcl-1 inhibitor: 1. potent, selective, and rapid apoptosis in Mcl-1-dependent cell lines (e.g., GI50 as low as 10 nM in multiple myeloma cell lines); 2. loss of activity upon overexpression of Bcl-xL or siRNA-mediated knockout of Bak; 3. Mcl-1:Bak complex disruption as demonstrated by co-immunoprecipitation. AZD5991 is active in vivo, with complete (100%) tumor regression demonstrated in several mouse xenograft models after a single tolerated dose. We have also demonstrated synergistic in vivo efficacy in combination with standard-of-care agents. Analysis of ex vivo activity in primary samples from leukemia patients indicates that a high percentage of leukemia patients should respond to drug treatment, which supports our plan for a phase I trial of AZD5991 in patients with hematologic cancers. Citation Format: Alexander W. Hird, J. Paul Secrist, Ammar Adam, Matthew A. Belmonte, Eric Gangl, Frank Gibbons, David Hargreaves, Jeffrey W. Johannes, Stephen L. Kazmirski, Jason G. Kettle, Stephen E. Kurtz, Michelle L. Lamb, Martin J. Packer, Bo Peng, Craig R. Stewart, Jeffrey W. Tyner, Wenzhan Yang, Qing Ye, XiaoLan Zheng, Edwin A. Clark. AZD5991: A potent and selective macrocyclic inhibitor of Mcl-1 for treatment of hematologic cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr DDT01-02. doi:10.1158/1538-7445.AM2017-DDT01-02


Molecular Cancer Therapeutics | 2015

Abstract LB-C22: Acquired resistance to the cMET inhibitor savolitinib in lung cancer models through EGFR/mTOR/MYC deregulation and adoption of PIM signaling

Ryan Henry; Evan Barry; Brendon Ladd; Aleksandra Markovets; Garry Beran; Yongxin Ren; Feng Zhou; Lillian Castriotta; Ammar Adam; Weiguo Qing; Weiguo Su; Edwin Clark; Celina D'Cruz; Alwin Schuller

Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. Aberrant receptor tyrosine kinase (RTK) signaling is a well-documented driver of disease onset and progression in multiple cancer types, including non-small cell lung cancer (NSCLC), where the cMET RTK contributes to tumor progression, maintenance and resistance to targeted therapies. Here, we explore the therapeutic potential of the potent and selective cMET inhibitor savolitinib (volitinib, AZD6094, HMPL-504) in NSCLC and begin to elucidate mechanisms of acquired savolitinib resistance in preclinical models. Using in vitro proliferation assays and immunoblot analysis, we determine that savolitinib rapidly inhibits cMET auto-phosphorylation/activation and reduces the viability of NSCLC cell lines NCI-H1993 and EBC-1 with a GI50 of 4.20 nM and 2.14 nM, respectively. In vivo, once daily treatment of NCI-H1993 xenografts with 3.0 mg/kg savolitinib significantly slows tumor growth, whereas treatment of EBC-1 xenografts with 30.0 mg/kg results in tumor stasis. Importantly, we observe tumor regressions in a patient-derived xenograft model of a NSCLC lymph node metastasis, HLXF-036LN, dosed with savolitinib 50.0 mg/kg once daily. Pharmacodynamic analysis of in vitro and in vivo models shows that savolitinib sensitivity correlates with blockade of PI3K/AKT and MAPK signaling, and interestingly, with cMYC (MYC) protein down-regulation. To elucidate mechanisms of acquired resistance in NSCLC, we generated savolitinib resistance in vitro using the NCI-H1993 and EBC-1 cell lines and further sub-cloned resistant NCI-H1993 cells to study the heterogeneity of resistance mechanisms. Using small-molecule screening, phospho-protein arrays and interrogation of signaling pathway activity by immunoblot, we identify 1) deregulated mTORC1/2 signaling and 2) the uncoupling of MYC expression from cMET activation as commonly contributing to resistance in all clones tested. RNA interference (siRNA) and MYC over-expression experiments confirm the novel finding that sustained MYC expression can partially drive resistance to a tyrosine kinase inhibitor such as savolitinib. Additionally, we identify clone-specific resistance mechanisms arising via a previously-described switch to EGFR dependence or by our novel finding of a de novo requirement for PIM signaling. Taken together, this work demonstrates the preclinical efficacy of savolitinib in NSCLC and provides an initial characterization of potential resistance mechanisms, identifying core resistance targets and clone-specific vulnerabilities that could be exploited to counter acquired savolitinib resistance that may emerge in the clinic. Citation Format: Ryan E. Henry, Evan R. Barry, Brendon Ladd, Aleksandra Markovets, Garry J. Beran, Yongxin Ren, Feng Zhou, Lillian Castriotta, Ammar Adam, Weiguo Qing, Weiguo Su, Edwin Clark, Celina M. D9Cruz, Alwin Schuller. Acquired resistance to the cMET inhibitor savolitinib in lung cancer models through EGFR/mTOR/MYC deregulation and adoption of PIM signaling. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr LB-C22.


Cancer Research | 2015

Abstract 1477: Pharmacodynamic response and anti-tumor activity of the MET inhibitor AZD6094 in papillary renal cell carcinoma patient derived xenograft models

Alwin Schuller; Evan Barry; Rhys D.O. Jones; Melanie M. Frigault; Garry Beran; Ryan Henry; David Linsenmayer; Maureen Hattersley; Aaron Smith; Joanne Wilson; Ammar Adam; Michael Zinda; Corinne Reimer; Stephen Fawell; Edwin Clark; Celina D'Cruz

Papillary renal cell carcinoma (PRCC) is the second most common cancer of the kidney and carries a poor prognosis for patients with non-localized disease. The central role of the hepatocyte growth factor (HGF) receptor MET in PRCC has been explored, demonstrating that MET aberrations, either through mutation, copy number gain, or trisomy of chromosome 7 (the location of MET and HGF) occur in the majority of PRCC cases. We sought to evaluate AZD6094 (HMPL-504), a potent and selective small molecule MET kinase inhibitor, in this disease setting. However, the development of effective therapies targeting MET and other targets in PRCC has been hampered in part by a lack of available preclinical models to test novel targeted therapies. Here we describe for the first time the pharmacodynamic (PD) response and anti-tumor activity of the selective MET inhibitor AZD6094 in two preclinical patient derived xenograft (PDX) models of PRCC (RCC-43b and RCC-47). Both PDX models have increased MET copy number of 8 and 9 copies by FISH in RCC-43b, and RCC-47 respectively, and robust MET protein staining by IHC. AZD6094 treatment resulted in dose dependent anti-tumor responses reaching ∼85% tumor growth inhibition (TGI) when dosed at 2.5 mg/kg daily (qd), stasis when dosed 10 mg/kg qd, and ∼20% regression when dosed at 25 mg/kg qd in the RCC-43b model and ∼63% TGI, ∼89% TGI, ∼64% regression, and ∼96% regression in the RCC-47 model when dosed 0.5, 2.5, 10, and 25 mg/kg qd respectively. The standard of care for RCC, sunitinib, showed no activity in RCC-43b when dosed at 10 mg/kg qd (∼10% TGI, p>0.05 vs vehicle) and ∼60% TGI when dosed at 80 mg/kg qd. Pharmacodynamic analysis of RCC-47 tumors revealed that two hours after an acute dose of AZD6094 pMET levels were reduced >95% at all dose levels tested (0.5 - 25 mg/kg). Eight hours after dosing, pMET levels returned to ∼50% in the 0.5 and 2.5 mg/kg dose groups whereas pMET was still inhibited >90% in the 10 and 25 mg/kg dose groups indicating that the duration of target inhibition was dose related. AZD6094 inhibited multiple signaling nodes including MAPK, PI3K, and EGFR. Finally, at doses that induced tumor regression, AZD6094 resulted in a dose and time dependent induction of cleaved PARP, a marker of cell death. The finding that lower, sub-optimal doses of AZD6094 showed return of pMET 8 hours after a single administration, raised the question whether splitting the dose over a longer duration would increase anti-tumor activity. Indeed, twice a day dosing (bid, 8;16 hours) of AZD6094 at 1.25 mg/kg was more efficacious than daily administration of 2.5 mg/kg resulting in 8% regression compared to 89% TGI (p Citation Format: Alwin Schuller, Evan Barry, Rhys Jones, Melanie Frigault, Garry Beran, Ryan Henry, David Linsenmayer, Maureen Hattersley, Aaron Smith, Joanne Wilson, Ammar Adam, Michael Zinda, Corinne Reimer, Stephen Fawell, Edwin Clark, Celina D9Cruz. Pharmacodynamic response and anti-tumor activity of the MET inhibitor AZD6094 in papillary renal cell carcinoma patient derived xenograft models. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 1477. doi:10.1158/1538-7445.AM2015-1477


Cancer Research | 2012

Abstract 2011: A novel bcl-2/xL inhibitor induces tumor cell apoptosis and potentiates the activity of standard chemotherapeutics

Terry MacIntyre; Francoise Powell; Paula Lewis; Ammar Adam; Deborah Lawson; Jiaquan Wu; Nicholas A. Larsen; Galina Repik; Julie Parmentier; Paul Secrist; Stephanos Ioaniddis; Kate Byth

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL Tumor cells often evade apoptosis by tipping the balance of Bcl-2 family and BH3-only protein expression towards a more anti-apoptotic environment, thus providing a survival advantage as well as a means of resistance to anti-cancer therapies. Indeed, over-expression of Bcl-2 family members has been shown to confer chemo-resistance in multiple tumor types. One potential result of this survival adaptation, however, is that the tumor cells become dependent on said Bcl-2 family member and hence increasingly vulnerable to targeted pro-apoptotic BH3 mimetics. Clinical validation of this concept has been demonstrated with the Bcl-2/xL inhibitor Navitoclax, where as a single agent in phase I/II trials in relapsed, refractory CLL patients, a 20% response rate was observed. Due to the potential that directly targeting the apoptotic machinery holds in treating cancer, developing BH3 mimetics that easily and effectively combine with standard chemotherapies is an attractive proposition. With this in mind, we have discovered and characterized a novel small molecule BH3 mimetic with nanomolar affinity for Bcl-2 and Bcl-xL. Here we characterize the in vitro and in vivo activity of this inhibitor in a variety of cell types. In addition to exhibiting potent single agent anti-cancer activity, it also potentiates the effectiveness of standard chemotherapeutic agents. Importantly, it also induces regression of sensitive tumors in vivo after a single IV bolus dose. Overall, this novel Bcl-2/xL inhibitor represents an exciting tool to further explore the mechanistic rationale for using potent BH3 mimetics as a foundation therapy across a broad range of tumor types where resistance to standard therapies arises from deregulation of the Bcl-2 family of anti-apoptotic proteins. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2011. doi:1538-7445.AM2012-2011


Cancer Research | 2014

Abstract 3114: Targeting MET in preclinical models to support the clinical development of Volitinib in NSCLC

Celina D'Cruz; Melanie M. Frigault; Ammar Adam; Minhui Shen; Garry Beran; Evan Barry; Paul R. Gavine; Yongxin Ren; Shiming Fan; Feng Zhou; Weiguo Qing; Mike Zinda; Weiguo Su; Edwin Clark


Blood | 2014

Evaluation of Mcl-1 Inhibitors in Preclinical Models of Multiple Myeloma

Matthew A. Belmonte; Ammar Adam; Deanna Borrelli; Deepa Bhavsar; Christina Bebernitz; Alexander Hird; Paul Secrist

Collaboration


Dive into the Ammar Adam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge