Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ammon B. Peck is active.

Publication


Featured researches published by Ammon B. Peck.


Nature Medicine | 2000

Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells

Vijayakumar K. Ramiya; Michael Maraist; Karl E. Arfors; Desmond A. Schatz; Ammon B. Peck; Janet G. Cornelius

Ductal structures of the adult pancreas contain stem cells that differentiate into islets of Langerhans. Here, we grew pancreatic ductal epithelial cells isolated from prediabetic adult non-obese diabetic mice in long-term cultures, where they were induced to produce functioning islets containing α, β and δ cells. These in vitro-generated islets showed temporal changes in mRNA transcripts for islet cell-associated differentiation markers, responded in vitro to glucose challenge, and reversed insulin-dependent diabetes after being implanted into diabetic non-obese diabetic mice. The ability to control growth and differentiation of islet stem cells provides an abundant islet source for β-cell reconstitution in type I diabetes.


Nature Medicine | 2002

Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization.

Maria B. Grant; W. Stratford May; Sergio Caballero; Gary A. J. Brown; Steven M. Guthrie; Robert N. Mames; Barry J. Byrne; Timothy Vaught; Polyxenie E. Spoerri; Ammon B. Peck; Edward W. Scott

Adults maintain a reservoir of hematopoietic stem cells that can enter the circulation to reach organs in need of regeneration. We developed a novel model of retinal neovascularization in adult mice to examine the role of hematopoietic stem cells in revascularizing ischemic retinas. Adult mice were durably engrafted with hematopoietic stem cells isolated from transgenic mice expressing green fluorescent protein. We performed serial long-term transplants, to ensure activity arose from self-renewing stem cells, and single hematopoietic stem-cell transplants to show clonality. After durable hematopoietic engraftment was established, retinal ischemia was induced to promote neovascularization. Our results indicate that self-renewing adult hematopoietic stem cells have functional hemangioblast activity, that is, they can clonally differentiate into all hematopoietic cell lineages as well as endothelial cells that revascularize adult retina. We also show that recruitment of endothelial precursors to sites of ischemic injury has a significant role in neovascularization.


Proceedings of the National Academy of Sciences of the United States of America | 2002

In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone- producing cells

Li-Jun Yang; Shiwu Li; Heather M. Hatch; Kim Ahrens; Janet G. Cornelius; Bryon E. Petersen; Ammon B. Peck

Although organ-specific stem cells possess plasticity that permit differentiation along new lineages, production of endocrine pancreas and insulin-secreting β cells from adult nonpancreatic stem cells has not been demonstrated. We present evidence that highly purified adult rat hepatic oval “stem” cells, which are capable of differentiation to hepatocytes and bile duct epithelium, can trans-differentiate into pancreatic endocrine hormone-producing cells when cultured in a high-glucose environment. These differentiated cells can self-assemble to form three-dimensional islet cell-like clusters that express pancreatic islet cell differentiation-related transcripts detectable by reverse transcription–PCR/nested PCR (e.g., PDX-1, PAX-4, PAX-6, Nkx2.2 and Nkx6.1, insulin I, insulin II, glucose transporter 2, and glucagon) and islet-specific hormones detectable by immunocytochemistry (e.g., insulin, glucagon, and pancreatic polypeptide). In addition, these cells concomitantly lose expression of the hepatocyte protein Hep-par. When stimulated with glucose, these cells synthesize and secrete insulin, a response enhanced by nicotinamide. In a pilot study, the oval cell-derived islet cell-like clusters displayed the ability to reverse hyperglycemia in a diabetic NOD-scid mouse. These results indicate that primary adult liver stem cells can differentiate in a nonlineage-restricted manner. Trans-differentiation into endocrine pancreas could have significant implications for future therapies of diabetes.


Arthritis & Rheumatism | 2008

Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjogren's syndrome: findings in humans and mice.

Cuong Q. Nguyen; Min H. Hu; Yi Li; Carol M. Stewart; Ammon B. Peck

OBJECTIVE Recently, the Th1/Th2 paradigm has been expanded by the discovery of Th17 cells, a subset of CD4+ memory T cells characterized by their unique ability to secrete interleukin-17 (IL-17) family cytokines. Importantly, Th17 cells appear to be intimately involved in autoimmunity. We undertook the present study to investigate whether the Th17/IL-23 system is up-regulated in Sjögrens syndrome (SS). METHODS Sera, saliva, and salivary glands from C57BL/6.NOD-Aec1Aec2 mice (a model for primary SS), as well as sera, saliva, and salivary gland biopsy specimens obtained from patients with primary SS, were evaluated for IL-17 and IL-23 expression by immunohistochemistry, real-time polymerase chain reaction, and the Luminex system. RESULTS Immunohistochemical stainings of submandibular glands from C57BL/6.NOD-Aec1Aec2 mice and of salivary gland biopsy specimens from SS patients revealed strong positive staining for both IL-17 and IL-23 within lymphocytic foci and diffuse staining on epithelial tissues. Temporal expression of IL-17 and IL-23 in submandibular glands of C57BL/6.NOD-Aec1Aec2 mice correlated with expression of retinoic acid-related orphan receptor gammat, the Th17 cell master control gene. While IL-17 could not be detected in saliva from 4-20-week-old C57BL/6.NOD-Aec1Aec2 mice, this cytokine was present in the blood of mice up to age 16 weeks. This contrasted with sera and saliva from SS patients, in which IL-17 and IL-6 were present at varying levels. CONCLUSION These results suggest that the Th17/IL-23 system is up-regulated in C57BL/6.NOD-Aec1Aec2 mice and SS patients at the time of disease. A correlation between up-regulated IL-17/IL-23 expression and specific clinical manifestations of SS has yet to be identified.


The Lancet | 1998

Absence of Oxalobacter formigenes in cystic fibrosis patients: A risk factor for hyperoxaluria

Harmeet Sidhu; Bernd Hoppe; Albrecht Hesse; Klaus Tenbrock; Sabine Bromme; Ernst Rietschel; Ammon B. Peck

BACKGROUND Patients with cystic fibrosis have an increased risk of hyperoxaluria, and of subsequent nephrocalcinosis and calcium-oxalate urolithiasis. Oxalate homoeostasis is controlled, in part, by the intestinal bacterium, Oxalobacter formigenes. The loss of this bacterium from the gut flora is associated with an increased risk of hyperoxaluria and calcium-oxalate urolithiasis. We investigated whether the absence of O. formigenes and the presence of hyperoxaluria are correlated in cystic fibrosis (CF) patients. METHODS Stool specimens from 43 patients with CF aged 3-9 years and from 21 similarly aged healthy volunteers were examined for O. formigenes by culture and DNA analysis. At the same time, 24 h urine samples were collected and analysed for oxalate and other factors that promote or inhibit stone formation. FINDINGS 15 (71%) of 21 healthy volunteers but only seven (16%) of 43 CF patients were colonised with O. formigenes. Detection of O. formigenes in six of these seven patients required DNA-based identification, suggesting low numbers of colony-forming units, and the CF patient with normal numbers of O. formigenes was the only one of the 43 patients who had not been treated with antibiotics. All seven CF patients colonised with O. formigenes had normal urinary oxalate levels, but 19 (53%) of 36 patients not colonised with O. formigenes were hyperoxaluric, with the most severe hyperoxaluria occurring in young patients. INTERPRETATION Absence of O. formigenes from the intestinal tract of CF patients appears to lead to increased absorption of oxalate, thereby increasing the risk of hyperoxaluria and its complications (eg, nephrocalcinosis, urolithiasis). Prolonged widespread use of antibiotics, and alterations of the gastrointestinal tract that occur in CF, may induce a permanent decolonisation in CF patients.


The Journal of Urology | 2001

RAPID REVERSAL OF HYPEROXALURIA IN A RAT MODEL AFTER PROBIOTIC ADMINISTRATION OF OXALOBACTER FORMIGENES

Harmeet Sidhu; Milton J. Allison; J.O. May Chow; Amy Clark; Ammon B. Peck

PURPOSE The gut inhabiting bacterium Oxalobacter formigenes may be a negative risk factor in recurrent calcium oxalate kidney stone disease that apparently maintains oxalic acid homeostasis in its host via the degradation of dietary oxalate. The possibility of using this bacterium as probiotic treatment to reduce urinary oxalate was investigated in a rat model. MATERIALS AND METHODS Male Sprague-Dawley rats were placed on a diet supplemented with ammonium oxalate to induce a state of severe hyperoxaluria. Subgroups of these rats received an esophageal gavage of 1 x 10(3), 10(5), 10(7) or 10(9) O. formigenes per feeding for a 2-week period. Each rat was followed for general health and changes in urinary oxalate. RESULTS Rats with chronic hyperoxaluria resulting from high dietary oxalate that were treated with O. formigenes showed decreased urinary oxalate within 2 days of initiating probiotic supplementation. The amount of the decrease in a 2-week period proved directly proportional to the dose of bacteria. Urinary oxalate in rats receiving higher amounts of O. formigenes returned to almost normal. Throughout the study the rats remained healthy with no signs of toxicity, antibody development or a histopathological condition. CONCLUSIONS Probiotic treatment of hyperoxaluric rats with O. formigenes may significantly and rapidly reduce the level of oxalate in the urine. This probiotic treatment appears to be safe and well tolerated. The approach may be feasible for treating calcium oxalate kidney stone disease.


Arthritis & Rheumatism | 2000

Evidence for antimuscarinic acetylcholine receptor antibody–mediated secretory dysfunction in NOD mice

Kim H.-T. Nguyen; Jason Brayer; Seunghee Cha; Stephanie Diggs; Utako Yasunari; George Hilal; Ammon B. Peck; Michael G. Humphreys-Beher

OBJECTIVE Antibodies directed against general and specific target-organ autoantigens are present in the sera of human patients and animal models with autoimmune disease. The relevance of these autoantibodies to the disease process remains ambiguous in most cases. In autoimmune exocrinopathy (Sjögrens syndrome), autoantibodies to the intracellular nuclear proteins SSA/Ro and SSB/La, as well as the cell surface muscarinic cholinergic receptor (M3) are observed. To evaluate the potential role of these factors in the loss of secretory function of exocrine tissues, a panel of monoclonal and polyclonal antibodies was developed for passive transfer into the NOD animal model. METHODS Monoclonal antibodies to mouse SSB/La, rat M3 receptor, and a rabbit polyclonal antiparotid secretory protein antibody were obtained for this study. These antibody reagents were subsequently infused into NOD-scid mice. Saliva flow rates were subsequently monitored over a 72-hour period. Submandibular gland lysates were examined by Western blotting for alteration of the distribution of the water channel protein aquaporin (AQP). RESULTS Evaluation of the secretory response indicated that only antibodies directed toward the extracellular domains of the M3 receptor were capable of mediating the exocrine dysfunction aspect of the clinical pathology of the autoimmune disease. In vitro stimulation with a muscarinic agonist of submandibular gland cells isolated from mice treated with anti-M3 antibody, but not saline or the isotype control, failed to translocate AQP to the plasma membrane. CONCLUSION These findings define a clear role for the humoral immune response and the targeting of the cell surface M3 signal transduction receptor as primary events in the development of clinical symptoms of autoimmune exocrinopathy. Furthermore, the anti-M3 receptor activity may negatively affect the secretory response through perturbation of normal signal transduction events, leading to translocation of the epithelial cell water channel.


Arthritis & Rheumatism | 1998

A novel NOD-derived murine model of primary Sjögren's syndrome.

Christopher P. Robinson; Shigeo Yamachika; Denise I. Bounous; Jason Brayer; Roland Jonsson; Rikard Holmdahl; Ammon B. Peck; Michael G. Humphreys-Beher

OBJECTIVE The appearance of autoimmune diabetes prior to autoimmune exocrinopathy in the NOD mouse suggests that it is an excellent model of secondary, but not primary, autoimmune sicca complications. Since the unique major histocompatibility complex (MHC) I-A(g7) expression in NOD mice is essential for the development of insulitis and diabetes in these animals, we investigated exocrine gland function in NOD.B10.H2b mice, which have an MHC congenic to NOD, as a potential model for primary Sjögrens syndrome (SS). METHODS Histopathologic manifestations of lymphocytic infiltrates into the pancreas and exocrine tissues were examined by light microscopy. Sera were evaluated for the presence of antinuclear antibodies. Saliva, tears, and gland lysates were evaluated for total volume and protein concentration, the aberrant expression and processing of parotid secretory protein, and cysteine protease activity. RESULTS NOD.B10.H2b mice exhibited the exocrine gland lymphocytic infiltration typical of the SS-like disease and dysfunction observed in NOD mice, but without the insulitis and diabetes. These mice additionally expressed elevated levels of cysteine protease activity (a measure of apoptotic activity) and abnormal expression and cleavage of parotid secretory protein in the submandibular tissues. CONCLUSION The results of this study suggest that the unique NOD MHC I-A(g7) is not essential for exocrine tissue autoimmunity. Furthermore, the findings indicate that sicca syndrome occurs independently of autoimmune diabetes and that the congenic NOD.B10.H2b mouse represents a novel murine model of primary SS.


The Journal of Urology | 2002

Expression of Osteopontin in Rat Kidneys: Induction During Ethylene Glycol Induced Calcium Oxalate Nephrolithiasis

Saeed R. Khan; Joanne M. Johnson; Ammon B. Peck; Janet G. Cornelius; Patricia A. Glenton

PURPOSE Osteopontin is a well-known component of stone matrix and a strong inhibitor of the nucleation, growth and aggregation of calcium oxalate crystals in vitro. To understand its involvement in vivo in calcium oxalate nephrolithiasis we investigated the renal expression and urinary excretion of osteopontin in normal rats, and rats with hyperoxaluria and calcium oxalate crystal deposits in the kidneys. MATERIALS AND METHODS Calcium oxalate nephrolithiasis was induced by administering ethylene glycol. Immunohistochemistry and in situ hybridization were done to localize osteopontin and osteopontin messenger RNA in the kidneys, while sensitive reverse transcriptase quantitative competitive template polymerase chain reaction was performed to detect and quantify osteopontin messenger RNA expression. Urinary excretion was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis, and then quantified by densitometry of the Western blots. RESULTS Osteopontin expression in the kidneys was significantly increased after hyperoxaluria and it increased further after the deposition of calcium oxalate crystals in the kidneys. Urinary excretion of osteopontin increased concomitantly. The results reveal differences in renal responses after exposure to oxalate and calcium oxalate crystals. In normal kidneys osteopontin expression was limited to a small number of cells of the thin limbs of the loop of Henle and papillary surface epithelium. During hyperoxaluria osteopontin expression in the kidneys was increased but still mostly limited to cells of the thin limb and papillary surface epithelium. However, after calcium oxalate crystal deposition osteopontin expression was observed throughout the kidneys, including segments of the proximal tubules. CONCLUSIONS In response to exposure to oxalate and calcium oxalate crystals renal epithelial cells increase the production of osteopontin, which may have a significant role in calcium oxalate nephrolithiasis.


Scandinavian Journal of Immunology | 2004

A Dual Role for Interferon-γ in the Pathogenesis of Sjögren's Syndrome-Like Autoimmune Exocrinopathy in the Nonobese Diabetic Mouse

Seunghee Cha; Jason Brayer; Juehua Gao; V. Brown; Smruti Killedar; U. Yasunari; Ammon B. Peck

Sjögrens syndrome‐like autoimmune exocrinopathy (AEC) in the nonobese diabetic (NOD) mouse progresses from a preimmune phase to an immune phase, resulting in dry mouth and/or dry eyes. In the present study, the impact of the prototypical T‐helper type 1 cytokine, interferon‐gamma (IFN‐γ), on the onset of AEC was investigated using both the IFN‐γ and the IFN‐γ receptor gene knockout mice, NOD.IFN‐γ–/– and NOD.IFN‐γR–/–, respectively. Neither the NOD.IFN‐γ–/– nor the NOD.IFN‐γR–/– mice exhibited increased acinar cell apoptosis and abnormal salivary protein expression, typically observed in parental NOD mice prior to disease. Without these preimmune phase abnormalities, NOD.IFN‐γ–/– and NOD.IFN‐γR–/– mice showed no subsequent autoimmune responses against the salivary glands at 20 weeks. Interestingly, real‐time polymerase chain reaction and electrophoretic gel mobility shift assays suggested that IFN‐γ and STAT1, as well as the transcriptional activity of STAT1 in NOD glands, were increased at birth. Unlike the neonatal submandibular glands of NOD or NOD‐scid mice that show abnormal glandular morphogenesis at birth, the submandibular glands of the newly constructed congenic strain, NOD‐scid.IFN‐γ–/–, were found to be normal. Taken together, IFN‐γ appears to play a critical role not only during the later immune phase of AEC, but also the early preimmune phase, independent of effector functions of immune cells. How exactly IFN‐γ functions during this period remains speculative.

Collaboration


Dive into the Ammon B. Peck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge