Amna R. Soomro
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amna R. Soomro.
Gastrointestinal Endoscopy | 2014
Melissa J. Suter; Michalina Gora; Gregory Y. Lauwers; Thomas Arnason; Jenny Sauk; Kevin A. Gallagher; Lauren Kava; Khay M. Tan; Amna R. Soomro; Timothy P. Gallagher; Joseph A. Gardecki; Brett E. Bouma; Mireille Rosenberg; Norman S. Nishioka; Guillermo J. Tearney
BACKGROUND Biopsy surveillance protocols for the assessment of Barretts esophagus can be subject to sampling errors, resulting in diagnostic uncertainty. Optical coherence tomography is a cross-sectional imaging technique that can be used to conduct volumetric laser endomicroscopy (VLE) of the entire distal esophagus. We have developed a biopsy guidance platform that places endoscopically visible marks at VLE-determined biopsy sites. OBJECTIVE The objective of this study was to demonstrate in human participants the safety and feasibility of VLE-guided biopsy in vivo. DESIGN A pilot feasibility study. SETTING Massachusetts General Hospital. PATIENTS A total of 22 participants were enrolled from January 2011 to June 2012 with a prior diagnosis of Barretts esophagus. Twelve participants were used to optimize the laser marking parameters and the system platform. A total of 30 target sites were selected and marked in real-time by using the VLE-guided biopsy platform in the remaining 10 participants. INTERVENTION Volumetric laser endomicroscopy. MAIN OUTCOME MEASUREMENTS Endoscopic and VLE visibility, and accuracy of VLE diagnosis of the tissue between the laser cautery marks. RESULTS There were no adverse events of VLE and laser marking. The optimal laser marking parameters were determined to be 2 seconds at 410 mW, with a mark separation of 6 mm. All marks made with these parameters were visible on endoscopy and VLE. The accuracies for diagnosing tissue in between the laser cautery marks by independent blinded readers for endoscopy were 67% (95% confidence interval [CI], 47%-83%), for VLE intent-to-biopsy images 93% (95% CI, 78%-99%), and for corrected VLE post-marking images 100% when compared with histopathology interpretations. LIMITATIONS This is a single-center feasibility study with a limited number of patients. CONCLUSION Our results demonstrate that VLE-guided biopsy of the esophagus is safe and can be used to guide biopsy site selection based on the acquired volumetric optical coherence tomography imaging data. ( CLINICAL TRIAL REGISTRATION NUMBER NCT01439633.).
Biomedical Optics Express | 2016
Giovanni J. Ughi; Michalina Gora; Anne-Fré Swager; Amna R. Soomro; Catriona N. Grant; Aubrey R. Tiernan; Mireille Rosenberg; Jenny Sauk; Norman S. Nishioka; Guillermo J. Tearney
Optical coherence tomography (OCT) is an optical diagnostic modality that can acquire cross-sectional images of the microscopic structure of the esophagus, including Barretts esophagus (BE) and associated dysplasia. We developed a swallowable tethered capsule OCT endomicroscopy (TCE) device that acquires high-resolution images of entire gastrointestinal (GI) tract luminal organs. This device has a potential to become a screening method that identifies patients with an abnormal esophagus that should be further referred for upper endoscopy. Currently, the characterization of the OCT-TCE esophageal wall data set is performed manually, which is time-consuming and inefficient. Additionally, since the capsule optics optimally focus light approximately 500 µm outside the capsule wall and the best quality images are obtained when the tissue is in full contact with the capsule, it is crucial to provide feedback for the operator about tissue contact during the imaging procedure. In this study, we developed a fully automated algorithm for the segmentation of in vivo OCT-TCE data sets and characterization of the esophageal wall. The algorithm provides a two-dimensional representation of both the contact map from the data collected in human clinical studies as well as a tissue map depicting areas of BE with or without dysplasia. Results suggest that these techniques can potentially improve the current TCE data acquisition procedure and provide an efficient characterization of the diseased esophageal wall.
Gastroenterology | 2013
Michalina Gora; Jenny Sauk; Robert W. Carruth; Weina Lu; Drew T. Carlton; Amna R. Soomro; Mireille Rosenberg; Norman S. Nishioka; Guillermo J. Tearney
Endoscopic examination of the upper gastrointestinal tract is costly, inconvenient, and typically requires that the patient be sedated.1 Standard video endoscopy only provides macroscopic information so small, focal biopsies are excised in order to obtain a microscopic tissue diagnosis. Because there are few reliable visible cues for Barrett’s esophagus and dysplasia, crucial diagnostic regions can be missed. In order to overcome these limitations of endoscopy, we have integrated a microscopic imaging technology into a tethered capsule that can be swallowed. This new method, which we term tethered capsule endomicroscopy, provides microscopic information from the entire esophagus as the pill passes through the GI tract.
Journal of Biomedical Optics | 2016
Michalina Gora; Leigh H. Simmons; Lucille Quénéhervé; Catriona N. Grant; Robert W. Carruth; Weina Lu; Aubrey R. Tiernan; Jing Dong; Beth Walker-Corkery; Amna R. Soomro; Mireille Rosenberg; Joshua P. Metlay; Guillermo J. Tearney
Abstract. Due to the relatively high cost and inconvenience of upper endoscopic biopsy and the rising incidence of esophageal adenocarcinoma, there is currently a need for an improved method for screening for Barrett’s esophagus. Ideally, such a test would be applied in the primary care setting and patients referred to endoscopy if the result is suspicious for Barrett’s. Tethered capsule endomicroscopy (TCE) is a recently developed technology that rapidly acquires microscopic images of the entire esophagus in unsedated subjects. Here, we present our first experience with clinical translation and feasibility of TCE in a primary care practice. The acceptance of the TCE device by the primary care clinical staff and patients shows the potential of this device to be useful as a screening tool for a broader population.
Lasers in Surgery and Medicine | 2017
DongKyun Kang; Simon C. Schlachter; Robert W. Carruth; Minkyu Kim; Tao Wu; Nima Tabatabaei; Amna R. Soomro; Catriona N. Grant; Mireille Rosenberg; Norman S. Nishioka; Guillermo J. Tearney
Diagnosis of esophageal diseases is often hampered by sampling errors that are inherent in endoscopic biopsy, the standard of care. Spectrally encoded confocal microscopy (SECM) is a high‐speed reflectance confocal endomicroscopy technology that has the potential to visualize cellular features from large regions of the esophagus, greatly decreasing the likelihood of sampling error. In this paper, we report results from a pilot clinical study imaging the human esophagus in vivo with a prototype SECM endoscopic probe.
Proceedings of SPIE | 2016
Jing Dong; Michalina Gora; Rohith Reddy; Wolfgang Trasischker; Oriane Poupart; Weina Lu; Robert W. Carruth; Catriona N. Grant; Amna R. Soomro; Aubrey R. Tiernan; Mireille Rosenberg; Norman S. Nishioka; Guillermo J. Tearney
While endoscopy is the most commonly used modality for diagnosing upper GI tract disease, this procedure usually requires patient sedation that increases cost and mandates its operation in specialized settings. In addition, endoscopy only visualizes tissue superfically at the macroscopic scale, which is problematic for many diseases that manifest below the surface at a microscopic scale. Our lab has previously developed technology termed tethered capsule OCT endomicroscopy (TCE) to overcome these diagnostic limitations of endoscopy. The TCE device is a swallowable capsule that contains optomechanical components that circumferentially scan the OCT beam inside the body as the pill traverses the organ via peristalsis. While we have successfully imaged ~100 patients with the TCE device, the optics of our current device have many elements and are complex, comprising a glass ferrule, optical fiber, glass spacer, GRIN lens and prism. As we scale up manufacturing of this device for clinical translation, we must decrease the cost and improve the manufacturability of the capsule’s optical configuration. In this abstract, we report on the design and development of simplificed TCE optics that replace the GRIN lens-based configuration with an angle-polished ball lens design. The new optics include a single mode optical fiber, a glass spacer and an angle polished ball lens, that are all fusion spliced together. The ball lens capsule has resolutions that are comparable with those of our previous GRIN lens configuration (30µm (lateral) × 7 µm (axial)). Results in human subjects show that OCT-based TCE using the ball lens not only provides rapid, high quality microstructural images of upper GI tract, but also makes it possible to implement this technology inexpensively and on a larger scale.
Proceedings of SPIE | 2016
Michalina Gora; Leigh H. Simmons; Aubrey R. Tiernan; Catriona N. Grant; Amna R. Soomro; Elizabeth Walker Corkery; Mireille Rosenberg; Joshua P. Metlay; Guillermo J. Tearney
We have developed a swallowable tethered capsule OCT endomicroscopy (TCE) device that acquires microscopic images of the entire esophagus in unsedated subjects in a quick and comfortable procedure. To test its capabilities of TCE to become a population-based screening device, we conducted a clinical feasibility study in the primary care office. The swept-source OCT imaging system (1310nm central wavelength, 40kHz A-line rate, 10um axial resolution) together with the tethered capsule catheter (11x25mm capsule attached to a flexible tether) were transferred to the PCP office where unsedated patients scheduled for non-urgent PCP visits swallowed the capsule and microscopic OCT images of the entire esophagus were collected. After the whole length of the esophagus was imaged, the catheter was disinfected for reuse. Twenty subjects were enrolled in the study, including nine female and eleven male. All TCE procedures were performed by a nurse and lasted in average 5:42 ± 1:54 min. High-resolution images of the esophagus were obtained in all seventeen subjects that swallowed the capsule. Our clinical experience in this cohort, subject feedback, image quality, and technological adaptations for efficient utilization in this setting will be presented. The ease and simplicity of the procedure combined with high quality of the images demonstrate the potential for this technology to become a population-based screening device. Technology limitations and future development guided by findings from this initial experience will be discussed with the goal of effectively translating TCE to the outpatient primary care setting.
Proceedings of SPIE | 2016
DongKyun Kang; Minkyu Kim; Robert W. Carruth; Weina Lu; Tao Wu; Sanaz Alali; Dukho Do; Amna R. Soomro; Catriona N. Grant; Aubrey R. Tiernan; Mireille Rosenberg; Norman S. Nishioka; Guillermo J. Tearney
Spectrally encoded confocal microscopy (SECM) is a high-speed confocal endomicroscopy technology that can image extremely large regions of human tissue at cellular resolution within a short imaging time. Previously, we have developed a 7-mm-diameter SECM endoscopic capsule and successfully demonstrated imaging of human esophagus in vivo. Even though we were able to successfully capture images with the previous capsule, it suffered from two limitations: (1) the capsule had a small diameter, which provided a limited contact between SECM capsule and esophagus; and (2) speckle noise in SECM images made it challenging to appreciate cellular features. In this paper, we present a new SECM capsule, termed SECM half-inch tethered endoscopic capsule (HITEC), which addresses the two aforementioned technical challenges. With the SECM HITEC, a dual-clad fiber was used to reduce the speckle noise. Miniature GRIN optics was used to increase the NA of the fiber from 0.09 to 0.25, which made it possible to build a SECM capsule with large diameter (12.7 mm) while maintaining a short rigid length (22 mm). A water-immersion objective lens was custom designed and manufactured to provide high NA of 0.7. We have manufactured the SECM HITEC catheter and tested its optical and mechanical performance. Lateral and axial resolution was measured as 1.2 µm and 13 µm, respectively. We have imaged swine esophageal tissues ex vivo, and SECM images clearly visualized cell nuclei. Non-uniform rotational distortion (NURD) was small, less than 5%. Preliminary results suggest that SECM HITEC provides sufficient optical and mechanical performance for tissue imaging. In a future clinical study, we will test the feasibility of utilizing SECM HITEC for improved cellular imaging human of the human esophagus in vivo.
Proceedings of SPIE | 2016
Dukho Do; Sanaz Alali; DongKyun Kang; Nima Tabatabaie; Weina Lu; Catriona N. Grant; Amna R. Soomro; Norman S. Nishioka; Mireille Rosenberg; Paul E. Hesterberg; Qian Yuan; John Garber; Aubrey J. Katz; Wayne G. Shreffler; Guillermo J. Tearney
Eosinophilic Esophagitis (EoE) is caused by food allergies, and defined by histological presence of eosinophil cells in the esophagus. The current gold standard for EoE diagnosis is endoscopy with pinch biopsy to detect more than 15 eosinophils/ High power field (HPF). Biopsy examinations are expensive, time consuming and are difficult to tolerate for patients. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology capable of imaging individual eosinophils as highly scattering cells (diameter between 8 µm to 15 µm) in the epithelium. Our lab has developed a tethered SECM capsule that can be swallowed by unsedated patients. The capsule acquires large area confocal images, equivalent to more than 30,000 HPFs, as it traverses through the esophagus. In this paper, we present the outcome of a clinical study using the tethered SECM capsule for diagnosing EoE. To date, 32 subjects have been enrolled in this study. 88% of the subjects swallowed the capsules without difficulty and of those who swallowed the capsule, 95% preferred the tethered capsule imaging procedure to sedated endoscopic biopsy. Each imaging session took about 12 ± 2.4 minutes during which 8 images each spanning of 24 ± 5 cm2 of the esophagus were acquired. SECM images acquired from EoE patients showed abundant eosinophils as highly scattering cells in squamous epithelium. Results from this study suggest that the SECM capsule has the potential to become a less-invasive, cost-effective tool for diagnosing EoE and monitoring the response of this disease to therapy.
Biomedical optics | 2016
Michalina Gora; Leigh H. Simmons; Amna R. Soomro; Catriona N. Grant; Mireille Rosenberg; Aubrey J. Katz; Joshua P. Metlay; Norman S. Nishioka; G.J. Tearney
Experience with translation of the Tethered Capsule Endomicroscopy to the clinic and results showing its potential to address the unmet clinical need for a well tolerated method for screening and monitoring of digestive diseases will be presented.