Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amnon Sharir is active.

Publication


Featured researches published by Amnon Sharir.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase

Julia Mahamid; Amnon Sharir; Lia Addadi; Steve Weiner

A fundamental question in biomineralization is the nature of the first-formed mineral phase. In vertebrate bone formation, this issue has been the subject of a long-standing controversy. We address this key issue using the continuously growing fin bony rays of the Tuebingen long-fin zebrafish as a model for bone mineralization. Employing high-resolution scanning and transmission electron microscopy imaging, electron diffraction, and elemental analysis, we demonstrate the presence of an abundant amorphous calcium phosphate phase in the newly formed fin bones. The extracted amorphous mineral particles crystallize with time, and mineral crystallinity increases during bone maturation. Based on these findings, we propose that this amorphous calcium phosphate phase may be a precursor phase that later transforms into the mature crystalline mineral.


Development | 2007

HIF1α regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis

Roy Amarilio; Sergey Viukov; Amnon Sharir; Idit Eshkar-Oren; Randall S. Johnson; Elazar Zelzer

During early stages of limb development, the vasculature is subjected to extensive remodeling that leaves the prechondrogenic condensation avascular and, as we demonstrate hereafter, hypoxic. Numerous studies on a variety of cell types have reported that hypoxia has an inhibitory effect on cell differentiation. In order to investigate the mechanism that supports chondrocyte differentiation under hypoxic conditions, we inactivated the transcription factor hypoxia-inducible factor 1α (HIF1α) in mouse limb bud mesenchyme. Developmental analysis of Hif1α-depleted limbs revealed abnormal cartilage and joint formation in the autopod, suggesting that HIF1α is part of a mechanism that regulates the differentiation of hypoxic prechondrogenic cells. Dramatically reduced cartilage formation in Hif1α-depleted micromass culture cells under hypoxia provided further support for the regulatory role of HIF1α in chondrogenesis. Reduced expression of Sox9, a key regulator of chondrocyte differentiation, followed by reduction of Sox6, collagen type II and aggrecan in Hif1α-depleted limbs raised the possibility that HIF1α regulation of Sox9 is necessary under hypoxic conditions for differentiation of prechondrogenic cells to chondrocytes. To study this possibility, we targeted Hif1α expression in micromass cultures. Under hypoxic conditions, Sox9 expression was increased twofold relative to its expression in normoxic condition; this increment was lost in the Hif1α-depleted cells. Chromatin immunoprecipitation demonstrated direct binding of HIF1α to the Sox9 promoter, thus supporting direct regulation of HIF1α on Sox9 expression. This work establishes for the first time HIF1α as a key component in the genetic program that regulates chondrogenesis by regulating Sox9 expression in hypoxic prechondrogenic cells.


Developmental Cell | 2009

Muscle Contraction Is Necessary to Maintain Joint Progenitor Cell Fate

Joy Kahn; Yulia Shwartz; Einat Blitz; Sharon Krief; Amnon Sharir; Dario Breitel; Revital Rattenbach; Frédéric Relaix; Pascal Maire; Ryan B. Rountree; David M. Kingsley; Elazar Zelzer

During embryogenesis, organ development is dependent upon maintaining appropriate progenitor cell commitment. Synovial joints develop from a pool of progenitor cells that differentiate into various cell types constituting the mature joint. The involvement of the musculature in joint formation has long been recognized. However, the mechanism by which the musculature regulates joint formation has remained elusive. In this study, we demonstrate, utilizing various murine models devoid of limb musculature or its contraction, that the contracting musculature is fundamental in maintaining joint progenitors committed to their fate, a requirement for correct joint cavitation and morphogenesis. Furthermore, contraction-dependent activation of beta-catenin, a key modulator of joint formation, provides a molecular mechanism for this regulation. In conclusion, our findings provide the missing link between progenitor cell fate determination and embryonic movement, two processes shown to be essential for correct organogenesis.


Developmental Cell | 2009

Bone Ridge Patterning during Musculoskeletal Assembly Is Mediated through SCX Regulation of Bmp4 at the Tendon-Skeleton Junction

Einat Blitz; Sergey Viukov; Amnon Sharir; Yulia Shwartz; Jenna L. Galloway; Brian A. Pryce; Randy L. Johnson; Clifford J. Tabin; Ronen Schweitzer; Elazar Zelzer

During the assembly of the musculoskeletal system, bone ridges provide a stable anchoring point and stress dissipation for the attachment of muscles via tendons to the skeleton. In this study, we investigate the development of the deltoid tuberosity as a model for bone ridge formation. We show that the deltoid tuberosity develops through endochondral ossification in a two-phase process: initiation is regulated by a signal from the tendons, whereas the subsequent growth phase is muscle dependent. We then show that the transcription factor scleraxis (SCX) regulates Bmp4 in tendon cells at their insertion site. The inhibition of deltoid tuberosity formation and several other bone ridges in embryos in which Bmp4 expression was blocked specifically in Scx-expressing cells implicates BMP4 as a key mediator of tendon effects on bone ridge formation. This study establishes a mechanistic basis for tendon-skeleton regulatory interactions during musculoskeletal assembly and bone secondary patterning.


Journal of Structural Biology | 2011

Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: A cryo-electron microscopy study

Julia Mahamid; Amnon Sharir; Dvir Gur; Elazar Zelzer; Lia Addadi; Steve Weiner

Bone is the most widespread mineralized tissue in vertebrates and its formation is orchestrated by specialized cells - the osteoblasts. Crystalline carbonated hydroxyapatite, an inorganic calcium phosphate mineral, constitutes a substantial fraction of mature bone tissue. Yet key aspects of the mineral formation mechanism, transport pathways and deposition in the extracellular matrix remain unidentified. Using cryo-electron microscopy on native frozen-hydrated tissues we show that during mineralization of developing mouse calvaria and long bones, bone-lining cells concentrate membrane-bound mineral granules within intracellular vesicles. Elemental analysis and electron diffraction show that the intracellular mineral granules consist of disordered calcium phosphate, a highly metastable phase and a potential precursor of carbonated hydroxyapatite. The intracellular mineral contains considerably less calcium than expected for synthetic amorphous calcium phosphate, suggesting the presence of a cellular mechanism by which phosphate entities are first formed and thereafter gradually sequester calcium within the vesicles. We thus demonstrate that in vivo osteoblasts actively produce disordered mineral packets within intracellular vesicles for mineralization of the extracellular developing bone tissue. The use of a highly disordered precursor mineral phase that later crystallizes within an extracellular matrix is a strategy employed in the formation of fish fin bones and by various invertebrate phyla. This therefore appears to be a widespread strategy used by many animal phyla, including vertebrates.


Development | 2011

Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis

Amnon Sharir; Tomer Stern; Chagai Rot; Ron Shahar; Elazar Zelzer

The vertebrate skeleton consists of over 200 individual bones, each with its own unique shape, size and function. We study the role of intrauterine muscle-induced mechanical loads in determining the three-dimensional morphology of developing bones. Analysis of the force-generating capacity of intrauterine muscles in mice revealed that developing bones are subjected to significant and progressively increasing mechanical challenges. To evaluate the effect of intrauterine loads on bone morphogenesis and the contribution of the emerging shape to the ability of bones to withstand these loads, we monitored structural and mineral changes during development. Using daily micro-CT scans of appendicular long bones we identify a developmental program, which we term preferential bone growth, that determines the specific circumferential shape of each bone by employing asymmetric mineral deposition and transient cortical thickening. Finite element analysis demonstrates that the resulting bone structure has optimal load-bearing capacity. To test the hypothesis that muscle forces regulate preferential bone growth in utero, we examine this process in a mouse strain (mdg) that lacks muscle contractions. In the absence of mechanical loads, the stereotypical circumferential outline of each bone is lost, leading to the development of mechanically inferior bones. This study identifies muscle force regulation of preferential bone growth as the module that shapes the circumferential outline of bones and, consequently, optimizes their load-bearing capacity during development. Our findings invoke a common mechanism that permits the formation of different circumferential outlines in different bones.


Development | 2013

Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors.

Einat Blitz; Amnon Sharir; Haruhiko Akiyama; Elazar Zelzer

The assembly of the musculoskeletal system requires the formation of an attachment unit between a bone and a tendon. Tendons are often inserted into bone eminences, superstructures that improve the mechanical resilience of the attachment of muscles to the skeleton and facilitate movement. Despite their functional importance, little is known about the development of bone eminences and attachment units. Here, we show that bone eminence cells are descendants of a unique set of progenitors and that superstructures are added onto the developing long bone in a modular fashion. First, we show that bone eminences emerge only after the primary cartilage rudiments have formed. Cell lineage analyses revealed that eminence cells are not descendants of chondrocytes. Moreover, eminence progenitors were specified separately and after chondroprogenitors of the primary cartilage. Fields of Sox9-positive, Scx-positive, Col2a1-negative cells identified at presumable eminence sites confirm the identity and specificity of these progenitors. The loss of eminences in limbs in which Sox9 expression was blocked in Scx-positive cells supports the hypothesis that a distinct pool of Sox9- and Scx-positive progenitors forms these superstructures. We demonstrate that TGFβ signaling is necessary for the specification of bone eminence progenitors, whereas the SCX/BMP4 pathway is required for the differentiation of these progenitors to eminence-forming cells. Our findings suggest a modular model for bone development, involving a distinct pool of Sox9- and Scx-positive progenitor cells that form bone eminences under regulation of TGFβ and BMP4 signaling. This model offers a new perspective on bone morphogenesis and on attachment unit development during musculoskeletal assembly.


Journal of Experimental Medicine | 2008

CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules

Shoham Shivtiel; Orit Kollet; Kfir Lapid; Amir Schajnovitz; Polina Goichberg; Alexander Kalinkovich; Elias Shezen; Melania Tesio; Neta Netzer; Isabelle Petit; Amnon Sharir; Tsvee Lapidot

The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor κB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.


Veterinary Journal | 2010

The influence of severe prolonged exercise restriction on the mechanical and structural properties of bone in an avian model

Anna Shipov; Amnon Sharir; Elazar Zelzer; Joshua Milgram; Efrat Monsonego-Ornan; Ron Shahar

Many studies have described the effects of exercise restriction on the mammalian skeleton. In particular, human and animal models have shown that reduction in weight bearing leads to generalised bone loss and deterioration of its mechanical properties. The aim of this study was to assess the effect of prolonged exercise restriction coupled with heavy calcium demands on the micro-structural, compositional and mechanical properties of the avian skeleton. The tibiae and humeri of 2-year-old laying hens housed in conventional caging (CC) and free-range (FR) housing systems were compared by mechanical testing and micro-computed tomography (microCT) scanning. Analyses of cortical, cancellous and medullary bone were performed. Mechanical testing revealed that the tibiae and humeri of birds from the FR group had superior mechanical properties relative to those of the CC group, and microCT scanning indicated larger cortical and lower medullary regions in FR group bones. Cancellous bone analysis revealed higher trabecular thickness and a higher bone volume fraction in the FR group, but no difference in mineral density. The biomechanical superiority of bones from the FR group was primarily due to structural rather than compositional differences, and this was reflected in both the cortical and cancellous components of the bones. The study demonstrated that prolonged exercise restriction in laying hens resulted in major structural and mechanical effects on the bird skeleton.


Developmental Dynamics | 2010

Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded

Natalia Lyashenko; Martina Weissenböck; Amnon Sharir; Reinhold G. Erben; Yasuhiro Minami; Christine Hartmann

Ror1 is a member of the Ror‐family receptor tyrosine kinases. Ror1 is broadly expressed in various tissues and organs during mouse embryonic development. However, so far little is known about its function. The closely related family member Ror2 was shown to play a crucial role in skeletogenesis and has been shown to act as a co‐receptor for Wnt5a mediating non‐canonical Wnt‐signaling. Previously, it has been shown that during embryonic development Ror1 acts in part redundantly with Ror2 in the skeletal and cardiovascular systems. In this study, we report that loss of the orphan receptor Ror1 results in a variety of phenotypic defects within the skeletal and urogenital systems and that Ror1 mutant mice display a postnatal growth retardation phenotype. Developmental Dynamics 239:2266–2277, 2010.

Collaboration


Dive into the Amnon Sharir's collaboration.

Top Co-Authors

Avatar

Elazar Zelzer

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ron Shahar

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ophir D. Klein

University of California

View shared research outputs
Top Co-Authors

Avatar

Joshua Milgram

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Efrat Monsonego-Ornan

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Einat Blitz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Steve Weiner

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Tomer Stern

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix W. Wehrli

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge