Amod P. Kulkarni
University of Cape Town
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amod P. Kulkarni.
Annals of the New York Academy of Sciences | 2004
Amod P. Kulkarni; Laurie A. Kellaway; Debomoy K. Lahiri; Girish J. Kotwal
Abstract: Several neurodegenerative disorders, such as multiple sclerosis, Alzheimers disease, and Parkinsons disease, are associated with inflammatory damage. The complex process of neuroinflammation involves various components of the immune system and the central nervous system. Particularly, brain astrocytes and microglial cells generate several inflammatory mediators like cytokines, leukotrienes, superoxide radicals, eicasonoids, and the components of the complement cascade. Complement plays an important role in the etiology of most of the neuroinflammatory disorders. To prevent long‐term dysfunction inflammation in the central nervous system must be modulated with neuroprotective agents such as nonsteroidal anti‐inflammatory drugs, steroids, phenolic thiazoles, nitrones, catechins, nitric oxide synthetase inhibitors, flavonoids, and phosphodiesterase inhibitors. Few drugs are found to be effective and their therapeutic benefit is hampered by side effects. Most of the neuroprotective agents are free radical scavengers and many inhibit only one or two aspects of inflammation. The complement inhibitory activity of most of these agents is either unknown or not established. Thus, there is doubt regarding their therapeutic value in most of the inflammatory disorders in which complement plays a major role. In this context the role of a multifunctional protein, vaccinia virus complement control protein (VCP), is quite significant as it may play a pivotal role in the treatment of several neuroinflammatory disorders. VCP is known to inhibit both complement pathways involved in inflammation. It is also known to inhibit cytokines and chemokines in inflammation. Our recent studies on rats demonstrate that VCP administration inhibits macrophage infiltration, reduces spinal cord destruction, and improves motor skills associated with spinal cord injury, establishing VCP as a strong candidate for neuroprotection. Thus, complement inhibitors such as VCP can serve as neuroprotective agents in inflammation associated with several neurodegenerative disorders.
Annals of the New York Academy of Sciences | 2005
Amod P. Kulkarni; Laurie A. Kellaway; Girish J. Kotwal
The upregulated complement system plays a damaging role in disorders of the central nervous system (CNS). The classical and alternate pathways are two major pathways activated in neuroinflammatory disorders such as Alzheimers disease, multiple sclerosis, traumatic brain injury, spinal cord injury, HIV‐associated dementia, Parkinsons disease, and mad cow disease. Failure of currently available anti‐inflammatory agents, especially cycloxygenase inhibitors, in offering significant neuroprotection in large epidemiologic clinical trials of CNS disorders suggests an urgent need for the development of new neuroprotective agents. The positive preclinical outcomes in treating CNS disorders by complement regulatory molecules, such as vaccinia virus complement control protein, suggest the possibility of using complement‐inhibitory molecules as neuroprotective agents. Several active ingredients of herbal origin are found to have complement‐inhibitory activity. These herbal ingredients along with other anti‐inflammatory roles might be useful in treating neuroinflammation associated with CNS disorders. Active ingredients of herbal origin with complement inhibitory ingredients are summarized and classified according to their chemical nature and specificity towards the major pathways activating the complement system. The structure activity relationship of some specific examples is also discussed in this report. This information might be helpful in formulating a natural panacea against complement‐mediated neuroinflammation.
Annals of the New York Academy of Sciences | 2005
Amod P. Kulkarni; Yohannes T. Ghebremariam; Girish J. Kotwal
Curcumin (Cur), the golden yellow phenolic compound in turmeric, is well studied for its medicinal properties. In the current investigation, Cur dissolved using sodium hydroxide solution (CurNa) was tested for in vitro complement inhibitory activity and compared with rosmarinic acid (RA) and quercetin (Qur) dissolved using sodium hydroxide (RANa and QurNa, respectively) and the vaccinia virus complement control protein (VCP). The comparative study indicated that CurNa inhibited the classical complement pathway dose dependently (IC50= 404 μM). CurNa was more active than RANa, but less active than QurNa. VCP was about 2,212, 2,786, and 4,520 times more active than QurNa, CurNa, and RANa, respectively. Further study revealed that CurNa dose dependently inhibited zymosan‐induced activation of the alternate pathway of complement activation.
Annals of the New York Academy of Sciences | 2005
Girish J. Kotwal; Jennifer N. Kaczmarek; Steven Leivers; Yohannes T. Ghebremariam; Amod P. Kulkarni; Gabriele Bauer; Corena De Beer; Wolfgang Preiser; Abdu Rahman Mohamed
Enveloped animal viruses such as human immunodeficiency virus (HIV), hepatitis B virus, hepatitis C virus, human papillomavirus, Marburg, and influenza are major public health concerns around the world. The prohibitive cost of antiretroviral (ARV) drugs for most HIV‐infected patients in sub‐Saharan Africa and the serious side effects in those who have access to ARV drugs make a compelling case for the study of complementary and alternative therapies. Such therapies should have scientifically proved antiviral activity and minimal toxic effects. A plant extract, Secomet‐V, with an anecdotal indication in humans for promise as an anti‐HIV treatment, was investigated. Using a previously described attenuated vaccinia virus vGK5, we established the antiviral activity of Secomet‐V. Chemical analysis showed that it has an acidic pH, nontoxic traces of iron (<10 ppm), and almost undetectable levels of arsenic (<1.0 ppm). The color varies from colorless to pale yellow to dark brown. The active agent is heat stable at least up to sterilizing temperature of 121°C. The crude plant extract is a mixture of several small molecules separable by high‐pressure liquid chromatography. The HIV viral loads were significantly reduced over several months in a few patients monitored after treatment with Secomet‐V. Secomet‐V was also found to have antiviral activity against the SARS virus but not against the West Nile virus. Secomet‐V, therefore, is a broad‐spectrum antiviral, which possibly works by neutralizing viral infectivity, resulting in the prevention of viral attachment.
Methods of Molecular Biology | 2012
Amod P. Kulkarni; Lauriston Kellaway; Girish J. Kotwal
Poxviruses are one of the most complex of animal viruses and encode for over 150 proteins. The interactions of many of the poxviral-encoded proteins with host proteins, as well as with other proteins, such as transcription complexes, have been well characterized at the qualitative level. Some have also been characterized quantitatively by two hybrid systems and surface plasmon resonance approaches. Presented here is an alternative approach that can enable the understanding of complex interactions with multiple ligands. The example given is that of vaccinia virus complement control protein (VCP). The complement system forms the first line of defense against microorganisms and a failure to appropriately regulate it is implicated in many inflammatory disorders, such as traumatic brain injury, Alzheimers disease (AD), and rheumatoid arthritis. The complement component C3 is central to the complement activation. Complement regulatory proteins, capable of binding to the central complement component C3, may therefore effectively be employed for the treatment and prevention of these disorders. There are many biochemical and/or immunoassays available to study the interaction of proteins with complement components. However, protocols for many of them are time consuming, and not all assays are useful for multiple screening. In addition, most of these assays may not give information regarding the nature of binding, the number of molecules interacting with the complement component C3, as well as kinetics of binding. Some of the assays may require labeling which may induce changes in protein confirmation. We report a protocol for an assay based on quartz crystal microbalance with dissipation monitoring (QCM-D) technology, which can effectively be employed to study poxviral proteins for their ability to interact with their ligand. A protocol was developed in our laboratories to study the interaction of VCP with the complement component C3 using Q-sense (D-300), equipment based on QCM-D technology. The protocol can also be used as a prototype for studying both proteins and small-sized compounds (for use as anti-poxvirals) for their ability to interact with and/or inhibit the activity of their ligands.
Methods of Molecular Biology | 2012
Amod P. Kulkarni; Dhirendra Govender; Lauriston Kellaway; Girish J. Kotwal
Poxviral proteins are known to interact with the immune system of the host. Some of them interact with the transcription factors of the host, whereas others interact with the components of the immune system. Vaccinia virus secretes a 28.8-kDa complement control protein (VCP), which is known to regulate the complement system. This protein helps the virus to evade the immune response of the host. Such viral proteins might also prove beneficial in the treatment and prevention of the progression of the disorders, where up-regulation of the complement system is evident. VCP has been shown experimentally to be effective in protecting tissues from inflammatory damage in the rodent models of Alzheimers diseases (AD), spinal cord injury, traumatic brain injury, and rheumatoid arthritis. Not only VCP, but also other poxviral proteins could be used therapeutically to treat or prevent the progression of the brain disorders, where the immune system is inadequately controlled. However, being a protein that cannot traverse the brain barrier because of its size, delivery of such proteins to the central nervous system (CNS) could be a limiting factor in their usefulness as CNS therapeutics. In this chapter, we show methods for the intranasal route of administration of a protein and show ways to detect its distribution in the cerebrospinal fluid (CSF) and to the different parts of the brain. These protocols can be extended to examine the distribution of viral antigens in the brain. A protocol is also included to quantitate vaccinia virus in different segments of the brain after intracranial administration of the virus.
The Open Biochemistry Journal | 2010
Amod P. Kulkarni; Philippa Randall; Krishna H. M. Murthy; Lauriston Kellaway; Girish J. Kotwal
C3 and C3b, the components central to the complement activation, also play a damaging role in several inflammatory disorders. Vaccinia virus complement control protein (VCP) and curcumin (Cur) are natural compounds with different biological origins reported to regulate complement activation. However, both VCP and Cur have not been investigated for their interaction with the third component (C3) prior to it being converted to its activated form (C3b). These two compounds have also not been compared to each other with respect to their interactions with C3 and C3b. Quartz crystal microbalance with dissipation monitoring (QCM-D) is a novel technology used to study the interaction of biomolecules. This technology was applied to characterize the interactions of VCP, Cur and appropriate controls with the key complement components. Cur as well as VCP showed binding to both C3 and to C3b, Cur however bound to C3b to a lesser extent.
Biogerontology | 2008
Amod P. Kulkarni; Nirvana S. Pillay; Lauriston Kellaway; Girish J. Kotwal
eLS | 2013
Girish J. Kotwal; Amod P. Kulkarni
Molecular Immunology | 2007
Amod P. Kulkarni; Krishna H. M. Murthy; Girish J. Kotwal