Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amom Ruhikanta Meetei is active.

Publication


Featured researches published by Amom Ruhikanta Meetei.


Nature Genetics | 2003

A novel ubiquitin ligase is deficient in Fanconi anemia

Amom Ruhikanta Meetei; Johan P. de Winter; Annette L. Medhurst; Michael Wallisch; Quinten Waisfisz; Henri J. Van De Vrugt; Anneke B. Oostra; Zhijiang Yan; Chen Ling; Colin E. Bishop; Maureen E. Hoatlin; Hans Joenje; Weidong Wang

Fanconi anemia is a recessively inherited disease characterized by congenital defects, bone marrow failure and cancer susceptibility. Cells from individuals with Fanconi anemia are highly sensitive to DNA-crosslinking drugs, such as mitomycin C (MMC). Fanconi anemia proteins function in a DNA damage response pathway involving breast cancer susceptibility gene products, BRCA1 and BRCA2 (refs. 1,2). A key step in this pathway is monoubiquitination of FANCD2, resulting in the redistribution of FANCD2 to nuclear foci containing BRCA1 (ref. 3). The underlying mechanism is unclear because the five Fanconi anemia proteins known to be required for this ubiquitination have no recognizable ubiquitin ligase motifs. Here we report a new component of a Fanconi anemia protein complex, called PHF9, which possesses E3 ubiquitin ligase activity in vitro and is essential for FANCD2 monoubiquitination in vivo. Because PHF9 is defective in a cell line derived from an individual with Fanconi anemia, we conclude that PHF9 (also called FANCL) represents a novel Fanconi anemia complementation group (FA-L). Our data suggest that PHF9 has a crucial role in the Fanconi anemia pathway as the likely catalytic subunit required for monoubiquitination of FANCD2.


Nature Genetics | 2005

A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M

Amom Ruhikanta Meetei; Annette L. Medhurst; Chen Ling; Yutong Xue; Thiyam Ramsing Singh; Patrick Bier; Jurgen Steltenpool; Stacie Stone; Inderjeet Dokal; Christopher G. Mathew; Maureen E. Hoatlin; Hans Joenje; Johan P. de Winter; Weidong Wang

Fanconi anemia is a genetic disease characterized by genomic instability and cancer predisposition. Nine genes involved in Fanconi anemia have been identified; their products participate in a DNA damage–response network involving BRCA1 and BRCA2 (refs. 2,3). We previously purified a Fanconi anemia core complex containing the FANCL ubiquitin ligase and six other Fanconi anemia–associated proteins. Each protein in this complex is essential for monoubiquitination of FANCD2, a key reaction in the Fanconi anemia DNA damage–response pathway. Here we show that another component of this complex, FAAP250, is mutant in individuals with Fanconi anemia of a new complementation group (FA-M). FAAP250 or FANCM has sequence similarity to known DNA-repair proteins, including archaeal Hef, yeast MPH1 and human ERCC4 or XPF. FANCM can dissociate DNA triplex, possibly owing to its ability to translocate on duplex DNA. FANCM is essential for monoubiquitination of FANCD2 and becomes hyperphosphorylated in response to DNA damage. Our data suggest an evolutionary link between Fanconi anemia–associated proteins and DNA repair; FANCM may act as an engine that translocates the Fanconi anemia core complex along DNA.


Molecular and Cellular Biology | 2003

A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome.

Amom Ruhikanta Meetei; Salvatore Sechi; Michael Wallisch; Dafeng Yang; Mary K. Young; Hans Joenje; Maureen E. Hoatlin; Weidong Wang

ABSTRACT Bloom syndrome (BS) is a genetic disorder associated with dwarfism, immunodeficiency, reduced fertility, and an elevated risk of cancer. To investigate the mechanism of this disease, we isolated from human HeLa extracts three complexes containing the helicase defective in BS, BLM. Interestingly, one of the complexes, termed BRAFT, also contains five of the Fanconi anemia (FA) complementation group proteins (FA proteins). FA resembles BS in genomic instability and cancer predisposition, but most of its gene products have no known biochemical activity, and the molecular pathogenesis of the disease is poorly understood. BRAFT displays a DNA-unwinding activity, which requires the presence of BLM because complexes isolated from BLM-deficient cells lack such an activity. The complex also contains topoisomerase IIIα and replication protein A, proteins that are known to interact with BLM and could facilitate unwinding of DNA. We show that BLM complexes isolated from an FA cell line have a lower molecular mass. Our study provides the first biochemical characterization of a multiprotein FA complex and suggests a connection between the BLM and FA pathways of genomic maintenance. The findings that FA proteins are part of a DNA-unwinding complex imply that FA proteins may participate in DNA repair.


The EMBO Journal | 2005

BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity

Jinhu Yin; Alexandra Sobeck; Chang Xu; Amom Ruhikanta Meetei; Maureen E. Hoatlin; Lei Li; Weidong Wang

Blooms syndrome (BS) is a rare human genetic disorder characterized by dwarfism, immunodeficiency, genomic instability and cancer predisposition. We have previously purified three complexes containing BLM, the helicase mutated in this disease. Here we demonstrate that BLAP75, a novel protein containing a putative OB‐fold nucleic acid binding domain, is an integral component of BLM complexes, and is essential for their stability in vivo. Consistent with a role in BLM‐mediated processes, BLAP75 colocalizes with BLM in subnuclear foci in response to DNA damage, and its depletion impairs the recruitment of BLM to these foci. Depletion of BLAP75 by siRNA also results in deficient phosphorylation of BLM during mitosis, as well as defective cell proliferation. Moreover, cells depleted of BLAP75 display an increased level of sister‐chromatid exchange, similar to cells depleted of BLM by siRNA. Thus, BLAP75 is an essential component of the BLM‐associated cellular machinery that maintains genome integrity.


Genes & Development | 2008

BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome.

Thiyam Ramsing Singh; Abdullah Mahmood Ali; Valeria Busygina; Steven Raynard; Qiang Fan; Chang-hu Du; Paul R. Andreassen; Patrick Sung; Amom Ruhikanta Meetei

Bloom Syndrome is an autosomal recessive cancer-prone disorder caused by mutations in the BLM gene. BLM encodes a DNA helicase of the RECQ family, and associates with Topo IIIalpha and BLAP75/RMI1 (BLAP for BLM-associated polypeptide/RecQ-mediated genome instability) to form the BTB (BLM-Topo IIIalpha-BLAP75/RMI1) complex. This complex can resolve the double Holliday junction (dHJ), a DNA intermediate generated during homologous recombination, to yield noncrossover recombinants exclusively. This attribute of the BTB complex likely serves to prevent chromosomal aberrations and rearrangements. Here we report the isolation and characterization of a novel member of the BTB complex termed BLAP18/RMI2. BLAP18/RMI2 contains a putative OB-fold domain, and several lines of evidence suggest that it is essential for BTB complex function. First, the majority of BLAP18/RMI2 exists in complex with Topo IIIalpha and BLAP75/RMI1. Second, depletion of BLAP18/RMI2 results in the destabilization of the BTB complex. Third, BLAP18/RMI2-depleted cells show spontaneous chromosomal breaks and are sensitive to methyl methanesulfonate treatment. Fourth, BLAP18/RMI2 is required to target BLM to chromatin and for the assembly of BLM foci upon hydroxyurea treatment. Finally, BLAP18/RMI2 stimulates the dHJ resolution capability of the BTB complex. Together, these results establish BLAP18/RMI2 as an essential member of the BTB dHJ dissolvasome that is required for the maintenance of a stable genome.


Molecular Cell | 2010

MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM.

Thiyam Ramsing Singh; Dorina Saro; Abdullah Mahmood Ali; Xiao-Feng Zheng; Chang-hu Du; Michael W. Killen; Aristidis Sachpatzidis; Kebola Wahengbam; Andrew J. Pierce; Yong Xiong; Patrick Sung; Amom Ruhikanta Meetei

FANCM is a Fanconi anemia nuclear core complex protein required for the functional integrity of the FANC-BRCA pathway of DNA damage response and repair. Here we report the isolation and characterization of two histone-fold-containing FANCM-associated proteins, MHF1 and MHF2. We show that suppression of MHF1 expression results in (1) destabilization of FANCM and MHF2, (2) impairment of DNA damage-induced monoubiquitination and foci formation of FANCD2, (3) defective chromatin localization of FA nuclear core complex proteins, (4) elevated MMC-induced chromosome aberrations, and (5) sensitivity to MMC and camptothecin. We also provide biochemical evidence that MHF1 and MHF2 assemble into a heterodimer that binds DNA and enhances the DNA branch migration activity of FANCM. These findings reveal critical roles of the MHF1-MHF2 dimer in DNA damage repair and genome maintenance through FANCM.


The EMBO Journal | 2007

FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway

Chen Ling; Masamichi Ishiai; Abdullah Mahmood Ali; Annette L. Medhurst; Kornelia Neveling; Reinhard Kalb; Zhijiang Yan; Yutong Xue; Anneke B. Oostra; Arleen D. Auerbach; Maureen E. Hoatlin; Detlev Schindler; Hans Joenje; Johan P. de Winter; Minoru Takata; Amom Ruhikanta Meetei; Weidong Wang

The Fanconi anemia (FA) core complex plays a central role in the DNA damage response network involving breast cancer susceptibility gene products, BRCA1 and BRCA2. The complex consists of eight FA proteins, including a ubiquitin ligase (FANCL) and a DNA translocase (FANCM), and is essential for monoubiquitination of FANCD2 in response to DNA damage. Here, we report a novel component of this complex, termed FAAP100, which is essential for the stability of the core complex and directly interacts with FANCB and FANCL to form a stable subcomplex. Formation of this subcomplex protects each component from proteolytic degradation and also allows their coregulation by FANCA and FANCM during nuclear localization. Using siRNA depletion and gene knockout techniques, we show that FAAP100‐deficient cells display hallmark features of FA cells, including defective FANCD2 monoubiquitination, hypersensitivity to DNA crosslinking agents, and genomic instability. Our study identifies FAAP100 as a new critical component of the FA‐BRCA DNA damage response network.


Cell Cycle | 2004

FANCL Replaces BRCA1 as the Likely Ubiquitin Ligase Responsible for FANCD2 Monoubiquitination

Amom Ruhikanta Meetei; Zhijiang Yan; Weidong Wang

Monoubiquitination of FANCD2 is a key step in the DNA damage response pathway involving Fanconi anemia proteins and the breast cancer susceptibility gene products, BRCA1 and BRCA2. One critical unresolved issue is the identity of the ubiquitin ligase responsible for this reaction. Two proteins, BRCA1 and FANCL(PHF9), have been suggested to be this ligase. Here we found that FANCL, but not BRCA1, evolutionarily co-exists with FANCD2 in several species. Moreover, the proportion of FANCD2 in chromatin and nuclear matrix is drastically reduced in a cell line mutated in FANCL, but not in that mutated in BRCA1. This defective distribution of FANCD2 in the FANCL-mutant cell line is likely due to its defective monoubiquitination, because the monoubiquitinated FANCD2 preferentially associates with chromatin and nuclear matrix, whereas non-ubiquitinated FANCD2 largely resides in the soluble fraction. Our data support the notion that FANCL, but not BRCA1, is the likely ligase for FANCD2 monoubiquitination.


The EMBO Journal | 2010

Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication

Dongyi Xu; Parameswary A. Muniandy; Elisabetta Leo; Jinhu Yin; Saravanabhavan Thangavel; Xi Shen; Miki; Keli Agama; Rong Guo; David Fox; Amom Ruhikanta Meetei; Lauren E. Wilson; Huy Nguyen; Nan Ping Weng; Steven J. Brill; Lei Li; Alessandro Vindigni; Yves Pommier; Michael M. Seidman; Weidong Wang

BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C‐terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM‐deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA‐binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA‐binding interface for the BLM complex to restart stalled replication forks.


Journal of Biological Chemistry | 2008

Functional Role of BLAP75 in BLM-Topoisomerase IIIα-dependent Holliday Junction Processing

Steven Raynard; Weixing Zhao; Wendy Bussen; Lucy Lu; Yang-Yang Ding; Valeria Busygina; Amom Ruhikanta Meetei; Patrick Sung

The BLAP75 protein combines with the BLM helicase and topoisomerase (Topo) IIIα to form an evolutionarily conserved complex, termed the BTB complex, that functions to regulate homologous recombination. BLAP75 binds DNA, associates with both BLM and Topo IIIα, and enhances the ability of the BLM-Topo IIIα pair to branch migrate the Holliday junction (HJ) or dissolve the double Holliday junction (dHJ) structure to yield non-crossover recombinants. Here we seek to understand the relevance of the biochemical attributes of BLAP75 in HJ processing. With the use of a series of BLAP75 protein fragments, we show that the evolutionarily conserved N-terminal third of BLAP75 mediates complex formation with BLM and Topo IIIα and that the DNA binding activity resides in the C-terminal third of this novel protein. Interestingly, the N-terminal third of BLAP75 is just as adept as the full-length protein in the promotion of dHJ dissolution and HJ unwinding by BLM-Topo IIIα. Thus, the BLAP75 DNA binding activity is dispensable for the ability of the BTB complex to process the HJ in vitro. Lastly, we show that a BLAP75 point mutant (K166A), defective in Topo IIIα interaction, is unable to promote dHJ dissolution and HJ unwinding by BLM-Topo IIIα. This result provides proof that the functional integrity of the BTB complex is contingent upon the interaction of BLAP75 with Topo IIIα.

Collaboration


Dive into the Amom Ruhikanta Meetei's collaboration.

Top Co-Authors

Avatar

Abdullah Mahmood Ali

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thiyam Ramsing Singh

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Weidong Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul R. Andreassen

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hans Joenje

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan P. de Winter

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chen Ling

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kebola Wahengbam

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge