Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amparo Cano is active.

Publication


Featured researches published by Amparo Cano.


Nature Cell Biology | 2000

The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression.

Amparo Cano; Mirna Perez-Moreno; Isabel Rodrigo; Annamaria Locascio; M. Blanco; Marta G. del Barrio; Francisco Portillo; M. Angela Nieto

The Snail family of transcription factors has previously been implicated in the differentiation of epithelial cells into mesenchymal cells (epithelial–mesenchymal transitions) during embryonic development. Epithelial–mesenchymal transitions are also determinants of the progression of carcinomas, occurring concomitantly with the cellular acquisition of migratory properties following downregulation of expression of the adhesion protein E-cadherin. Here we show that mouse Snail is a strong repressor of transcription of the E-cadherin gene. Epithelial cells that ectopically express Snail adopt a fibroblastoid phenotype and acquire tumorigenic and invasive properties. Endogenous Snail protein is present in invasive mouse and human carcinoma cell lines and tumours in which E-cadherin expression has been lost. Therefore, the same molecules are used to trigger epithelial–mesenchymal transitions during embryonic development and in tumour progression. Snail may thus be considered as a marker for malignancy, opening up new avenues for the design of specific anti-invasive drugs.


Nature Reviews Cancer | 2007

Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?

Héctor Peinado; David Olmeda; Amparo Cano

The molecular mechanisms that underlie tumour progression are still poorly understood, but recently our knowledge of particular aspects of some of these processes has increased. Specifically, the identification of Snail, ZEB and some basic helix-loop-helix (bHLH) factors as inducers of epithelial–mesenchymal transition (EMT) and potent repressors of E-cadherin expression has opened new avenues of research with potential clinical implications.


Nature Genetics | 2005

Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.

Mario F. Fraga; Esteban Ballestar; Ana Villar-Garea; Manuel Boix-Chornet; Jesús Espada; Gunnar Schotta; Tiziana Bonaldi; Claire E. Haydon; Santiago Ropero; Kevin Petrie; N. Gopalakrishna Iyer; Alberto Pérez-Rosado; Enrique Calvo; Juan Antonio López; Amparo Cano; María José Calasanz; Dolors Colomer; Miguel A. Piris; Natalie G. Ahn; Axel Imhof; Carlos Caldas; Thomas Jenuwein; Manel Esteller

CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.


Journal of Cell Science | 2003

The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors

Victoria Bolós; Héctor Peinado; Mirna Perez-Moreno; Mario F. Fraga; Manel Esteller; Amparo Cano

Transcriptional repression mechanisms have emerged as one of the crucial processes for the downregulation of E-cadherin expression during development and tumour progression. Recently, several E-cadherin transcriptional repressors have been characterized (Snail, E12/E47, ZEB-1 and SIP-1) and shown to act through an interaction with proximal E-boxes of the E-cadherin promoter. We have analyzed the participation of another member of the Snail family, Slug, and observed that it also behaves as a repressor of E-cadherin expression. Stable expression of Slug in MDCK cells leads to the full repression of E-cadherin at transcriptional level and triggers a complete epithelial to mesenchymal transition. Slug-induced repression of E-cadherin is mediated by its binding to proximal E-boxes, particularly to the E-pal element of the mouse promoter. Detailed analysis of the binding affinity of different repressors to the E-pal element indicates that Slug binds with lower affinity than Snail and E47 proteins. These results, together with the known expression patterns of these factors in embryonic development and carcinoma cell lines, support the idea that the in vivo action of the different factors in E-cadherin repression can be modulated by their relative concentrations as well as by specific cellular or tumour contexts.


Journal of Cell Biology | 2001

Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling

Héctor G. Pálmer; José Manuel González-Sancho; Jesús Espada; Maria T. Berciano; Isabel Puig; Josep Baulida; Miguel Quintanilla; Amparo Cano; Antonio García de Herreros; Miguel Lafarga; Alberto Muñoz

The β-catenin signaling pathway is deregulated in nearly all colon cancers. Nonhypercalcemic vitamin D3 (1α,25-dehydroxyvitamin D3) analogues are candidate drugs to treat this neoplasia. We show that these compounds promote the differentiation of human colon carcinoma SW480 cells expressing vitamin D receptors (VDRs) (SW480-ADH) but not that of a malignant subline (SW480-R) or metastasic derivative (SW620) cells lacking VDR. 1α,25(OH)2D3 induced the expression of E-cadherin and other adhesion proteins (occludin, Zonula occludens [ZO]-1, ZO-2, vinculin) and promoted the translocation of β-catenin, plakoglobin, and ZO-1 from the nucleus to the plasma membrane. Ligand-activated VDR competed with T cell transcription factor (TCF)-4 for β-catenin binding. Accordingly, 1α,25(OH)2D3 repressed β-catenin–TCF-4 transcriptional activity. Moreover, VDR activity was enhanced by ectopic β-catenin and reduced by TCF-4. Also, 1α,25(OH)2D3 inhibited expression of β-catenin–TCF-4-responsive genes, c-myc, peroxisome proliferator-activated receptor δ, Tcf-1, and CD44, whereas it induced expression of ZO-1. Our results show that 1α,25(OH)2D3 induces E-cadherin and modulates β-catenin–TCF-4 target genes in a manner opposite to that of β-catenin, promoting the differentiation of colon carcinoma cells.


Oncogene | 2005

DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells

Andreas Eger; Kirsten Aigner; Stefan Eugen Sonderegger; Brigitta Dampier; Susanne Oehler; Martin Schreiber; Geert Berx; Amparo Cano; Hartmut Beug; Roland Foisner

Downregulation of E-cadherin is a crucial event for epithelial to mesenchymal transition (EMT) in embryonic development and cancer progression. Using the EpFosER mammary tumour model we show that during EMT, upregulation of the transcriptional regulator deltaEF1 coincided with transcriptional repression of E-cadherin. Ectopic expression of deltaEF1 in epithelial cells was sufficient to downregulate E-cadherin and to induce EMT. Analysis of E-cadherin promoter activity and chromatin immunoprecipitation identified deltaEF1 as direct transcriptional repressor of E-cadherin. In human cancer cells, transcript levels of deltaEF1 correlated directly with the extent of E-cadherin repression and loss of the epithelial phenotype. The protein was enriched in nuclei of human cancer cells and physically associated with the E-cadherin promoter. RNA interference-mediated downregulation of deltaEF1 in cancer cells was sufficient to derepress E-cadherin expression and restore cell to cell adhesion, suggesting that deltaEF1 is a key player in late stage carcinogenesis.


Molecular and Cellular Biology | 2004

Snail Mediates E-Cadherin Repression by the Recruitment of the Sin3A/Histone Deacetylase 1 (HDAC1)/HDAC2 Complex

Héctor Peinado; Esteban Ballestar; Manel Esteller; Amparo Cano

ABSTRACT The transcription factor Snail has been described as a direct repressor of E-cadherin expression during development and carcinogenesis; however, the specific mechanisms involved in this process remain largely unknown. Here we show that mammalian Snail requires histone deacetylase (HDAC) activity to repress E-cadherin promoter and that treatment with trichostatin A (TSA) is sufficient to block the repressor effect of Snail. Moreover, overexpression of Snail is correlated with deacetylation of histones H3 and H4 at the E-cadherin promoter, and TSA treatment in Snail-expressing cells reverses the acetylation status of histones. Additionally, we demonstrate that Snail interacts in vivo with the E-cadherin promoter and recruits HDAC activity. Most importantly, we demonstrate an interaction between Snail, histone deacetylase 1 (HDAC1) and HDAC2, and the corepressor mSin3A. This interaction is dependent on the SNAG domain of Snail, indicating that the Snail transcription factor mediates the repression by recruitment of chromatin-modifying activities, forming a multimolecular complex to repress E-cadherin expression. Our results establish a direct causal relationship between Snail-dependent repression of E-cadherin and the modification of chromatin at its promoter.


Oncogene | 2002

Correlation of Snail expression with histological grade and lymph node status in breast carcinomas.

M. Blanco; Gema Moreno-Bueno; David Sarrió; Annamaria Locascio; Amparo Cano; José Palacios; M. Angela Nieto

Snail is a zinc finger transcription factor that triggers the epithelial-mesenchymal transition (EMT) by directly repressing E-cadherin expression. Snail is required for mesoderm and neural crest formation during embryonic development and has recently been implicated in the EMT associated with tumour progression. In a series of human breast carcinomas, we have analysed the expression of Snail and that of molecules of the E-cadherin/catenin complexes. We have also correlated these data with the pathological features of the tumours. We show that Snail expression inversely correlates with the grade of differentiation of the tumours and that it is expressed in all the infiltrating ductal carcinomas (IDC) presenting lymph node metastases that were analysed. In addition, Snail is expressed in some dedifferentiated tumours with a negative nodal status. Considering that Snail is involved in the induction of the invasive and migratory phenotype in epithelial cells, these results indicate that it is also involved in the progression of breast ductal tumours, where it could additionally serve as a marker of the metastatic potential.


Nature | 2008

Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling

Ilaria Malanchi; Héctor Peinado; Deepika Kassen; Thomas Hussenet; Daniel Metzger; Pierre Chambon; Marcel Huber; Daniel Hohl; Amparo Cano; Walter Birchmeier; Joerg Huelsken

Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe β-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the β-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased β-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/β-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.


Cancer Cell | 2012

Metastatic Colonization Requires the Repression of the Epithelial-Mesenchymal Transition Inducer Prrx1

Oscar H. Ocaña; Rebeca Córcoles; Angels Fabra; Gema Moreno-Bueno; Hervé Acloque; Sonia Vega; Alejandro Barrallo-Gimeno; Amparo Cano; M. Angela Nieto

The epithelial-mesenchymal transition (EMT) is required in the embryo for the formation of tissues for which cells originate far from their final destination. Carcinoma cells hijack this program for tumor dissemination. The relevance of the EMT in cancer is still debated because it is unclear how these migratory cells colonize distant tissues to form macrometastases. We show that the homeobox factor Prrx1 is an EMT inducer conferring migratory and invasive properties. The loss of Prrx1 is required for cancer cells to metastasize in vivo, which revert to the epithelial phenotype concomitant with the acquisition of stem cell properties. Thus, unlike the classical EMT transcription factors, Prrx1 uncouples EMT and stemness, and is a biomarker associated with patient survival and lack of metastasis.

Collaboration


Dive into the Amparo Cano's collaboration.

Top Co-Authors

Avatar

Gema Moreno-Bueno

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francisco Portillo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Quintanilla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanesa Santos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

David Olmeda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Angela Nieto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Angel Pestaña

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pilar Navarro

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge