Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amr R. A. Kataya is active.

Publication


Featured researches published by Amr R. A. Kataya.


The Plant Cell | 2011

Identification of Novel Plant Peroxisomal Targeting Signals by a Combination of Machine Learning Methods and in Vivo Subcellular Targeting Analyses

Thomas Lingner; Amr R. A. Kataya; Gerardo E. Antonicelli; Aline Benichou; Kjersti Nilssen; Xiong-Yan Chen; Tanja Siemsen; Burkhard Morgenstern; Peter Meinicke; Sigrun Reumann

Two different prediction methods for Arabidopsis proteins carrying peroxisome targeting signals type 1 (PTS1) are described. Validation of many novel targeting signals and Arabidopsis PTS1 proteins by in vivo localization experiments demonstrates a high prediction accuracy of the new methods. In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.


Plant Signaling & Behavior | 2010

Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol

Amr R. A. Kataya; Sigrun Reumann

We recently established a proteome methodology for Arabidopsis leaf peroxisomes and identified more than 90 putative novel proteins of the organelle. These proteins included glutathione reductase isoform 1 (GR1), a major enzyme of the antioxidative defense system that was previously reported to be cytosolic. In this follow-up study, we validated the proteome data by analyzing the in vivo subcellular targeting of GR1 and the function of its C-terminal tripeptide, TNL>, as a putative novel peroxisome targeting signal type 1 (PTS1). The full-length protein was targeted to peroxisomes in onion epidermal cells when fused N-terminally with the reporter protein. The efficiency of peroxisome targeting, however, was weak upon expression from a strong promoter, consistent with the idea that the enzyme is dually targeted to peroxisomes and the cytosol in vivo. The reporter protein that was extended C-terminally by 10 amino acid residues of GR1 was directed to peroxisomes, characterizing TNL> as a novel PTS1. The data thus identify plant peroxisomal GR at the molecular level in the first plant species and complete the plant peroxisomal ascorbateglutathione cycle. Moreover, GR1 is the first plant protein that is dually targeted to peroxisomes and the cytosol. The evolutionary origin and regulatory mechanisms of dual targeting are discussed.


BMC Plant Biology | 2012

Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis

Gopal Chowdhary; Amr R. A. Kataya; Thomas Lingner; Sigrun Reumann

BackgroundHigh-accuracy prediction tools are essential in the post-genomic era to define organellar proteomes in their full complexity. We recently applied a discriminative machine learning approach to predict plant proteins carrying peroxisome targeting signals (PTS) type 1 from genome sequences. For Arabidopsis thaliana 392 gene models were predicted to be peroxisome-targeted. The predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal.ResultsIn this study, we experimentally validated the predictions in greater depth by focusing on the most challenging Arabidopsis proteins with unknown non-canonical PTS1 tripeptides and prediction scores close to the threshold. By in vivo subcellular targeting analysis, three novel PTS1 tripeptides (QRL>, SQM>, and SDL>) and two novel tripeptide residues (Q at position −3 and D at pos. -2) were identified. To understand why, among many Arabidopsis proteins carrying the same C-terminal tripeptides, these proteins were specifically predicted as peroxisomal, the residues upstream of the PTS1 tripeptide were computationally permuted and the changes in prediction scores were analyzed. The newly identified Arabidopsis proteins were found to contain four to five amino acid residues of high predicted targeting enhancing properties at position −4 to −12 in front of the non-canonical PTS1 tripeptide. The identity of the predicted targeting enhancing residues was unexpectedly diverse, comprising besides basic residues also proline, hydroxylated (Ser, Thr), hydrophobic (Ala, Val), and even acidic residues.ConclusionsOur computational and experimental analyses demonstrate that the plant PTS1 tripeptide motif is more diverse than previously thought, including an increasing number of non-canonical sequences and allowed residues. Specific targeting enhancing elements can be predicted for particular sequences of interest and are far more diverse in amino acid composition and positioning than previously assumed. Machine learning methods become indispensable to predict which specific proteins, among numerous candidate proteins carrying the same non-canonical PTS1 tripeptide, contain sufficient enhancer elements in terms of number, positioning and total strength to cause peroxisome targeting.


Plant Physiology | 2015

Protein Phosphatase 2A Holoenzyme Is Targeted to Peroxisomes by Piggybacking and Positively Affects Peroxisomal β-Oxidation

Amr R. A. Kataya; Behzad Heidari; Lars Hagen; Roald Kommedal; Geir Slupphaug; Cathrine Lillo

Protein phosphatase 2A targets peroxisomes and positively affects fatty acid oxidation. The eukaryotic, highly conserved serine (Ser)/threonine-specific protein phosphatase 2A (PP2A) functions as a heterotrimeric complex composed of a catalytic (C), scaffolding (A), and regulatory (B) subunit. In Arabidopsis (Arabidopsis thaliana), five, three, and 17 genes encode different C, A, and B subunits, respectively. We previously found that a B subunit, B′θ, localized to peroxisomes due to its C-terminal targeting signal Ser-Ser-leucine. This work shows that PP2A C2, C5, andA2 subunits interact and colocalize with B′θ in peroxisomes. C and A subunits lack peroxisomal targeting signals, and their peroxisomal import depends on B′θ and appears to occur by piggybacking transport. B′θ knockout mutants were impaired in peroxisomal β-oxidation as shown by developmental arrest of seedlings germinated without sucrose, accumulation of eicosenoic acid, and resistance to protoauxins indole-butyric acid and 2,4-dichlorophenoxybutyric acid. All of these observations strongly substantiate that a full PP2A complex is present in peroxisomes and positively affects β-oxidation of fatty acids and protoauxins.


Virus Research | 2009

Cucurbit yellow stunting disorder virus p25 is a suppressor of post-transcriptional gene silencing.

Amr R. A. Kataya; Mohamed N.S. Suliman; Kriton Kalantidis; Ioannis Livieratos

Post-transcriptional gene silencing (PTGS) degrades RNA in a sequence-specific manner and is utilised by plants as a natural defence mechanism against virus invaders. Two members of the genus Crinivirus have been reported to encode suppressors and counter PTGS: Sweet potato chlorotic stunt virus p22 and Tomato chlorosis virus (ToCV) p22, coat protein and coat protein minor. Using an Agrobacterium-mediated transient assay on Nicotiana benthamiana wildtype and 16c plants, we screened four Cucurbit yellow stunting disorder virus (CYSDV) RNA 1-encoded proteins (papain-like protease, p25, p5.2 and p22) to determine which one possess PTGS suppressor activity. Amongst these proteins, only CYSDV p25 was able to suppress (double- and single-stranded) RNA-induced silencing of the green fluorescent protein (GFP) mRNA. Restoration of GFP expression by CYSDV p25 in both of these experiments had no apparent effect on the accumulation of the small interfering RNAs. The identification of CYSDV p25 adds to the list of suppressors encoded by crinivirus RNA 1 molecules, which are unrelated in terms of amino acid sequence homology suggesting distinct PTGS suppression mechanisms and possible roles in viral replication.


Journal of Plant Physiology | 2015

MAP kinase phosphatase 1 harbors a novel PTS1 and is targeted to peroxisomes following stress treatments.

Amr R. A. Kataya; Edit Schei; Cathrine Lillo

In Arabidopsis thaliana, twenty mitogen-activated protein kinases (MAPKs/MPKs) are regulated by five MAP kinase phosphatases (MKPs). Arabidopsis MKP1 has an important role in biotic, abiotic and genotoxic stresses and has been shown to interact with and negatively regulate specifically MPK3 and MPK6. MKP1 has been reported to have a role in negative regulation of reactive oxygen species (ROS) and salicylic acid (SA) production. As essential organelles involved in production of ROS and SA, peroxisomes could possibly be an important compartment for MKP1 activity, however MKP1 was previously reported to be cytosolic. By screening Arabidopsis protein phosphatases for peroxisomal targeting signal 1 (PTS1), we identified MKP1 as a putative peroxisomal protein. Arabidopsis MKP1 was found to harbor a non-canonical PTS1-like tripeptide (Ser-Ala-Leu>) that is conserved in MKP1 orthologs. We show experimentally that the C-terminal Ser-Ala-Leu> can function as a novel PTS1, and alanine in position -2, adds more relaxation to the plant PTS1 motif. The full-length MKP1 remained in the cytosol when transiently expressed in Arabidopsis mesophyll protoplasts under standard conditions. When different biotic and abiotic stresses were applied to mesophyll protoplasts, the full length protein changed its targeting to unidentified organelle-like structures that subsequently fused with peroxisomes. Our results identify MKP1 as a protein dually targeted to cytosol and peroxisomes. The finding that MKP1 targets peroxisomes by a non-canonical PTS1 under stressful conditions highlights the complexity of peroxisomal targeting mechanism.


Plant Signaling & Behavior | 2012

Experimental and statistical post-validation of positive example EST sequences carrying peroxisome targeting signals type 1 (PTS1)

Thomas Lingner; Amr R. A. Kataya; Sigrun Reumann

We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences.1 As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity.” Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals.


Planta | 2016

Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana

Amr R. A. Kataya; Edit Schei; Cathrine Lillo

Main conclusionThis work identifies new protein phosphatases and phosphatase-related proteins targeting peroxisomes, and raises the question of a novel protein import pathway from ER to peroxisomes involving peroxisomal targeting signal type 1 (PTS1)AbstractPlant peroxisomes are essential for several processes, for example lipid metabolism, free radical detoxification, development, and stress-related functions. Although research on peroxisomes has been intensified, reversible phosphorylation as a control mechanism in peroxisomes is barely studied. Therefore, it is crucial to identify all peroxisomal proteins involved in phosphoregulation. We here started with protein phosphatases, and searched the Arabidopsis thaliana genome for phosphatase-related proteins with putative peroxisomal targeting signals (PTS). Five potential peroxisomal candidates were detected, from which four were confirmed to target peroxisomes or have a functional PTS. The highly conserved Ser–Ser-Met> was validated for two protein phosphatase 2C (PP2C) family members (POL like phosphatases, PLL2 and PLL3) as a functional peroxisomal targeting signal type 1 (PTS1). Full-length PLL2 and PLL3 fused with a reporter protein targeted peroxisomes in two plant expression systems. A putative protein phosphatase, purple acid phosphatase 7 (PAP7), was found to be dually targeted to ER and peroxisomes and experiments indicated a possible trafficking to peroxisomes via the ER depending on peroxisomal PTS1. In addition, a protein phosphatase 2A regulator (TIP41) was validated to harbor a functional PTS1 (Ser-Lys-Val>), but the full-length protein targeted cytosol and nucleus. Reverse genetics indicated a role for TIP41 in senescence signaling. Mass spectrometry of whole seedlings and isolated peroxisomes was employed, and identified new putative phosphorylated peroxisomal proteins. Previously, only one protein phosphatase, belonging to the phospho-protein phosphatase (PPP) family, was identified as a peroxisomal protein. The present work implies that members of two other main protein phosphatase families, i.e. PP2C and PAP, are also targeting peroxisomes.


PLOS ONE | 2017

PLATINUM SENSITIVE 2 LIKE impacts growth, root morphology, seed set, and stress responses

Amr R. A. Kataya; Maria T. Creighton; Toga P. Napitupulu; Christine Sætre; Behzad Heidari; Peter Ruoff; Cathrine Lillo

Eukaryotic protein phosphatase 4 (PP4) is a PP2A-type protein phosphatase that is part of a conserved complex with regulatory factors PSY2 and PP4R2. Various lines of Arabidopsis thaliana with mutated PP4 subunit genes were constructed to study the so far completely unknown functions of PP4 in plants. Mutants with knocked out putative functional homolog of the PSY2 LIKE (PSY2L) gene were dwarf and bushy, while plants with knocked out PP4R2 LIKE (PP4R2L) looked very similar to WT. The psy2l seedlings had short roots with disorganized morphology and impaired meristem. Seedling growth was sensitive to the genotoxin cisplatin. Global transcript analysis (RNA-seq) of seedlings and rosette leaves revealed several groups of genes, shared between both types of tissues, strongly influenced by knocked out PSY2L. Receptor kinases, CRINKLY3 and WAG1, important for growth and development, were down-regulated 3–7 times. EUKARYOTIC ELONGATION FACTOR5A1 was down-regulated 4–6 fold. Analysis of hormone sensitive genes indicated that abscisic acid levels were high, while auxin, cytokinin and gibberellic acid levels were low in psy2l. Expression of specific transcription factors involved in regulation of anthocyanin synthesis were strongly elevated, e.g. the master regulator PAP1, and intriguingly TT8, which is otherwise mainly expressed in seeds. The psy2l mutants accumulated anthocyanins under conditions where WT did not, pointing to PSY2L as a possible upstream negative regulator of PAP1 and TT8. Expression of the sugar-phosphate transporter GPT2, important for cellular sugar and phosphate homeostasis, was enhanced 7–8 times. Several DNA damage response genes, including the cell cycle inhibitor gene WEE1, were up-regulated in psy2l. The activation of DNA repair signaling genes, in combination with phenotypic traits showing aberrant root meristem and sensitivity to the genotoxic cisplatin, substantiate the involvement of Arabidopsis PSY2L in maintenance of genome integrity.


Plant Cell and Environment | 2017

Methylation of protein phosphatase 2A – influence of regulators and environmental stress factors

Maria T. Creighton; Anna Kołton; Amr R. A. Kataya; Jodi Maple-Grødem; Irina O. Averkina; Behzad Heidari; Cathrine Lillo

Protein phosphatase 2A catalytic subunit (PP2A-C) has a terminal leucine subjected to methylation, a regulatory mechanism conserved from yeast to mammals and plants. Two enzymes, LCMT1 and PME1, methylate and demethylate PP2A-C, respectively. The physiological importance of these posttranslational modifications is still enigmatic. We investigated these processes in Arabidopsis thaliana by mutant phenotyping, by global expression analysis, and by monitoring methylation status of PP2A-C under different environmental conditions. The lcmt1 mutant, possessing essentially only unmethylated PP2A-C, had less dense rosettes, and earlier flowering than wild type (WT). The pme1 mutant, with 30% reduction in unmethylated PP2A-C, was phenotypically comparable with WT. Approximately 200 overlapping genes were twofold upregulated, and 200 overlapping genes were twofold downregulated in both lcmt1 and pme1 relative to WT. Differences between the 2 mutants were also striking; 97 genes were twofold upregulated in pme1 compared with lcmt1, indicating that PME1 acts as a negative regulator for these genes. Analysis of enriched GO terms revealed categories of both abiotic and biotic stress genes. Furthermore, methylation status of PP2A-C was influenced by environmental stress, especially by hypoxia and salt stress, which led to increased levels of unmethylated PP2A-C, and highlights the importance of PP2A-C methylation/demethylation in environmental responses.

Collaboration


Dive into the Amr R. A. Kataya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Lingner

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edit Schei

University of Stavanger

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioannis Livieratos

Mediterranean Agronomic Institute of Chania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge