Amr S. Abu Lila
Zagazig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amr S. Abu Lila.
Journal of Controlled Release | 2009
Amr S. Abu Lila; Shinji Kizuki; Yusuke Doi; Takuya Suzuki; Tatsuhiro Ishida; Hiroshi Kiwada
We recently designed a PEG-coated cationic liposome targeted to angiogenic vessels and showed, in a murine dorsal air sac model, potent anti-angiogenic activity of an oxaliplatin (l-OHP) formulation of this liposome. In the present study, we extended the l-OHP formulation to a murine tumor-xenograft model. Following three injections, l-OHP containing PEG-coated cationic liposomes showed substantial tumor growth suppression and increased survival time of tumor-bearing mice without apparent side effects, compared with other l-OHP containing PEG-coated neutral liposomes and free l-OHP. In vivo imaging showed a preferential tumor accumulation and a broader distribution of PEG-coated cationic liposomes, compared with PEG-coated neutral liposomes. In addition, PEG-coated cationic liposomes delivered larger amounts of l-OHP into the tumor tissue than other l-OHP formulations, correlating with its antitumor efficiency. In vitro studies indicated that PEG-coated cationic liposomes were internalized not only by tumor cells but also by endothelial cells, and consequently its l-OHP formulation displayed higher cytotoxicity towards both cell types as compared with l-OHP containing PEG-coated neutral liposomes. In summary, l-OHP containing PEG-coated cationic liposomes induced significant tumor growth suppression, presumably by delivering encapsulated l-OHP into both tumor endothelial cells and tumor cells. Such dual targeting approach, i.e. vascular-targeting and tumor-targeting with a single liposomal l-OHP formulation, may have great potential for overcoming some major limitations in conventional chemotherapy.
Pharmaceutical Research | 2010
Amr S. Abu Lila; Tatsuhiro Ishida; Hiroshi Kiwada
ABSTRACTLiposomal drug delivery systems improve the therapeutic index of chemotherapeutic agents, and the use of cationic liposomes to deliver anticancer drugs to solid tumors has recently been recognized as a promising therapeutic strategy to improve the effectiveness of conventional chemotherapeutics. This review summarizes the selective targeting of cationic liposomes to tumor vasculature, the merits of incorporating the polymer polyethylene-glycol (PEG), and the impact of the molar percent of the cationic lipid included in cationic liposomes on liposomal targeting efficacy. In addition, the discussion herein includes the therapeutic benefit of a dual targeting approach, using PEG-coated cationic liposomes in vascular targeting (of tumor endothelial cells), and tumor targeting (of tumor cells) of anticancer drugs. Cationic liposomes have shown considerable promise in preclinical xenograft models and are poised for clinical development.
Molecular Therapy | 2011
Kazuya Nakamura; Amr S. Abu Lila; Mariko Matsunaga; Yusuke Doi; Tatsuhiro Ishida; Hiroshi Kiwada
5-Fluorouracil (5-FU) is broadly considered the drug of choice for treating human colorectal cancer (CRC). However, 5-FU resistance, mainly caused by the overexpression of antiapoptotic proteins such as Bcl-2, often leads ultimately to treatment failure. We here investigated the effect of Bcl-2 gene silencing, using small interfering RNA (siRNA) (siBcl-2), on the efficacy of 5-FU in CRC. Transfection of siBcl-2 by a Lipofectamine2000/siRNA lipoplex effectively downregulated Bcl-2 expression in the DLD-1 cell line (a CRC), resulting in significant cell growth inhibition in vitro upon treatment with 5-FU. For in vivo treatments, S-1, an oral formulation of Tegafur (TF), a prodrug of 5-FU, was used to mimic 5-FU infusion. The combined treatment of polyethylene glycol (PEG)-coated siBcl-2-lipoplex and S-1 showed superior tumor growth suppression in a DLD-1 xenograft model, compared to each single treatment. Surprisingly, daily S-1 treatment enhanced the accumulation of PEG-coated siBcl-2-lipoplex in tumor tissue. We propose a novel double modulation strategy in cancer treatment, in which chemotherapy enhances intratumoral siRNA delivery and the delivered siRNA enhances the chemosensitivity of tumors. Combination of siRNA-containing nanocarriers with chemotherapy may compensate for the limited delivery of siRNA to tumor tissue. In addition, such modulation strategy may be considered a promising therapeutic approach to successfully managing 5-FU-resistant tumors.
International Journal of Pharmaceutics | 2013
Amr S. Abu Lila; Kosuke Nawata; Taro Shimizu; Tatsuhiro Ishida; Hiroshi Kiwada
The accelerated blood clearance (ABC) phenomenon accounts for the rapid systemic clearance of PEGylated nanocarriers upon repeated administrations. IgM production against the polyethylene glycol (PEG) coating in PEGylated liposomes is now known to be responsible for such unexpected pharmacokinetical alterations. The ABC phenomenon poses a remarkable clinical challenge by reducing the therapeutic efficacy of encapsulated drugs and causing harmful effects due to the altered tissue distribution pattern of the drugs. In this study, we investigated the in vivo performance of liposomes modified with polyglycerol (PG) upon repeated injection, and the in vivo therapeutic efficacy of such liposomes when they encapsulated a cytotoxic agent, doxorubicin (DXR). Repeated injection of PEG-coated liposomes in rats induced the ABC phenomenon, while repeated injection of PG-coated liposomes did not. In addition, DXR-containing PG-coated liposomes showed antitumor activity that was superior to that of free DXR and similar to that of DXR-containing PEG-coated liposomes upon repeated administration. These results indicate that polyglycerol (PG) might represent a promising alternative to PEG via enhancing the in vivo performance of liposomes by not eliciting the ABC phenomenon upon repeated administration.
Journal of Controlled Release | 2010
Amr S. Abu Lila; Yusuke Doi; Kazuya Nakamura; Tatsuhiro Ishida; Hiroshi Kiwada
Recently, we designed a PEG-coated cationic liposome to achieve dual targeting delivery of l-OHP to both tumor endothelial cells and tumor cells in a solid tumor. The targeted liposomal l-OHP formulation showed an efficient antitumor activity in a murine tumor model after three sequential liposomal l-OHP injections. This led us to assume that prior dosing with liposomes might enhance the intra-tumoral accumulation of a subsequent dose, and hence improve the therapeutic efficacy of entrapped l-OHP. The present study shows that while a single liposomal l-OHP injection does not enhance tumor accumulation of subsequent test-PEG-coated cationic liposomes, two sequential injections of liposomal l-OHP do. Cumulative cytotoxic effects of l-OHP delivered by PEG-coated cationic liposomes led to deep diffusion of a subsequent dose of liposomal l-OHP in solid tumor presumably as a result of the enlarged intra-tumoral interstitial space. Our study suggests that sequential injections of a targeted liposomal anticancer drug is of significant clinical and practical importance in enhancing the delivery of adequate quantities of anticancer agents into intractable solid tumors, and thereby may achieve a significant anticancer efficacy.
Expert Opinion on Drug Delivery | 2009
Amr S. Abu Lila; Tatsuhiro Ishida; Hiroshi Kiwada
Tumor vessels possess unique physiological features that might be exploited for improved drug delivery. The targeting of liposomal anticancer drugs to tumor vasculature is increasingly recognized as an effective strategy to obtain superior therapeutic efficacy with limited host toxicity compared with conventional treatments. This review introduces recent advances in the field of liposomal targeting of tumor vasculature, along with new approaches that can be used in the design and optimization of liposomal delivery systems. In addition, cationic liposome is focused on as a promising carrier for achieving efficient vascular targeting. The clinical implications are discussed of several approaches using a single liposomal anticancer drug formulation: dual targeting, vascular targeting (targeting tumor endothelial cells) and tumor targeting (targeting tumor cells).
International Journal of Pharmaceutics | 2012
Amr S. Abu Lila; Noha Essam Eldin; Masako Ichihara; Tatsuhiro Ishida; Hiroshi Kiwada
We previously developed a PEG-coated cationic liposome that enabled dual targeting delivery of oxaliplatin (l-OHP) to both tumor endothelial cells and tumor cells in a solid tumor. The targeted liposomal l-OHP formulation consequently elicited potent antitumor efficacy in a murine solid tumor model after 3 sequential injections. However, the probable mechanism(s) for this enhanced antitumor activity has not been fully elucidated. In the present study, therefore, the changes in tumor microenvironment induced by sequential administration of liposomal l-OHP were investigated, with emphasis on its impact to the intratumoral localization of the subsequently injected dose. In addition, the potential for anti-PEG IgM production upon repeated administration of liposomal l-OHP-containing PEGylated lipid was clearly revealed. Two sequential injections of liposomal l-OHP induced superior apoptotic activity in tumor tissue and thus resulted in broader intratumor distribution of the subsequent test dose of PEG-coated cationic liposomes, compared with a single injection of liposomal l-OHP. In addition, it was confirmed that repeated administration of liposomal l-OHP did not induce a significant anti-PEG IgM response, indicating that l-OHP encapsulated in PEG-coated liposomes was efficient in abrogating the ABC phenomenon. These results suggest that sequential treatment strategies with liposomal cytotoxic agents might be superior to mono-treatment strategies in achieving alterations in the tumor microenvironment and maintaining/restoring the pharmacokinetics of the formulation, and, therefore, would result in substantial therapeutic efficacy.
Biological & Pharmaceutical Bulletin | 2017
Amr S. Abu Lila; Tatsuhiro Ishida
The liposome, a closed phospholipid bilayered vesicular system, has received considerable attention as a pharmaceutical carrier of great potential over the past 30 years. The ability of liposomes to encapsulate both hydrophilic and hydrophobic drugs, coupled with their biocompatibility and biodegradability, make liposomes attractive vehicles in the field of drug delivery. In addition, great technical advances such as remote drug loading, triggered release liposomes, ligand-targeted liposomes, liposomes containing combinations of drugs, and so on, have led to the widespread use of liposomes in diverse areas as delivery vehicles for anti-cancer, bio-active molecules, diagnostics, and therapeutic agents. In this review, we summarize design optimization of liposomal systems and invaluable applications of liposomes as effective delivery systems.
Biological & Pharmaceutical Bulletin | 2015
Yosuke Hashimoto; Taro Shimizu; Amr S. Abu Lila; Tatsuhiro Ishida; Hiroshi Kiwada
PEGylation, which is the surface modification of nanocarriers with polyethylene glycol (PEG), has increased the circulation time and reduced the immunogenic responses to nanocarriers. However, many reports have demonstrated that the intravenous injection of sterically stabilized PEGylated liposome (SL) causes an accelerated blood clearance (ABC) of subsequent doses via anti-PEG immunoglobulin M (IgM)-mediated complement activation. In the present study, the relationships between serum anti-PEG IgM concentration, the intensity of complement activation and the hepatic clearance of SL were quantitatively investigated for their role in the ABC phenomenon. Interestingly, with increasing serum anti-PEG IgM concentrations, the intensity of complement activation increased linearly, while the intensity of the hepatic clearance of SL was increased and then saturated. In addition, only 15-17% of anti-PEG IgM in blood circulation induced by SL at different doses was associated with a second dose SL. The present results indicate that it is the hepatic uptake of SL that is the limiting step in the ABC phenomenon, rather than the association of anti-PEG IgM to the SL and a subsequent complement activation.
Toxicology and Applied Pharmacology | 2014
Yosuke Hashimoto; Taro Shimizu; Yu Mima; Amr S. Abu Lila; Tatsuhiro Ishida; Hiroshi Kiwada
PEGylation, the attachment of polyethylene glycol (PEG) to nanocarriers and proteins, is a widely accepted approach to improving the in vivo efficacy of the non-PEGylated products. However, both PEGylated liposomes and PEGylated proteins reportedly trigger the production of specific antibodies, mainly IgM, against the PEG moiety, which possibly leads to a reduction in safety and therapeutic efficacy of the PEGylated products. In the present study, two monoclonal anti-PEG IgMs--HIK-M09 via immunization with an intravenous injection of PEGylated liposomes (SLs) and HIK-M11 via immunization with a subcutaneous administration of PEGylated ovalbumin (PEG-OVA) were successfully generated. The generated IgMs showed efficient reactivity to mPEG2000 conjugated to 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine (DSPE), PEGylated liposome (SL) and PEG-OVA. It appears that HIK-M09 recognizes ethoxy (OCH₂CH₂) repeat units along with a terminal motif of PEG, while HIK-M11 recognizes only ethoxy repeat units of PEG. Such unique properties allow HIK-M09 to bind with dense PEG. In addition, their impact on the in vivo clearance of the PEGylated products was investigated. It was found that the generated ant-PEG IgMs induced a clearance of SL as they were intravenously administered with SL. Interestingly, the HIK-M11, generated by PEG-OVA, induced the clearance of both SL and PEG-OVA, while the HIK-M09, generated by SL, induced the clearance of SL only. We here revealed that the presence of serum anti-PEG IgM and the subsequent binding of anti-PEG IgM to the PEGylated products are not necessarily related to the enhanced clearance of the products. It appears that subsequent complement activation following anti-PEG IgM binding is the most important step in dictating the in vivo fate of PEGylated products. This study may have implications for the design, development and clinical application of PEGylated products and therapeutics.