Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amr Tamimi is active.

Publication


Featured researches published by Amr Tamimi.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy

Jun Nishida; Amr Tamimi; Honghan Fei; Sonja Pullen; Sascha Ott; Seth M. Cohen; M. D. Fayer

Significance A unique aspect of metal–organic frameworks (MOFs) is their structural flexibility coexisting with a degree of regularity. Adsorbed guest molecules can cause MOF pore shapes to deform. Pore shape changes may be related to the high capacity and selectivity of the MOFs for gas adsorption and other processes. MOF flexibility and other properties are influenced by fast dynamics of the framework. Direct measurements to characterize fast motions of the MOFs have not been applied previously. We show that 2D IR spectroscopy can be performed on functionalized MOFs. We use 2D IR and other ultrafast IR methods to elucidate the timescales for ultrafast structural fluctuations and how they are influenced by a solvent filling the pores. The structural elasticity of metal–organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Methodology advances were required to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer.


Journal of Chemical Physics | 2012

Comparisons of 2D IR measured spectral diffusion in rotating frames using pulse shaping and in the stationary frame using the standard method.

S. K. Karthick Kumar; Amr Tamimi; M. D. Fayer

Multidimensional visible spectroscopy using pulse shaping to produce pulses with stable controllable phases and delays has emerged as an elegant tool to acquire electronic spectra faster and with greatly reduced instrumental and data processing errors. Recent migration of this approach using acousto-optic modulator (AOM) pulse shaping to the mid-infrared region has proved useful for acquiring two dimensional infrared (2D IR) vibrational echo spectra. The measurement of spectral diffusion in 2D IR experiments hinges on obtaining accurate 2D line shapes. To date, pulse shaping 2D IR has not been used to study the time-dependent spectral diffusion of a vibrational chromophore. Here we compare the spectral diffusion data obtained from a standard non-collinear 2D IR spectrometer using delay lines to the data obtained from an AOM pulse shaper based 2D IR spectrometer. The pulse shaping experiments are performed in stationary, partially rotating, and fully rotating reference frames and are the first in the infrared to produce 2D spectra collected in a fully rotating frame using a phase controlled pulse sequence. Rotating frame experiments provide a dramatic reduction in the number of time points that must be measured to obtain a 2D IR spectrum, with the fully rotating frame giving the greatest reduction. Experiments were conducted on the transition metal carbonyl complex tricarbonylchloro(1,10-phenanthroline)rhenium(I) in chloroform. The time dependent data obtained from the different techniques and with different reference frames are shown to be in agreement.


Journal of the American Chemical Society | 2013

Ultrafast Structural Dynamics Inside Planar Phospholipid Multibilayer Model Cell Membranes Measured with 2D IR Spectroscopy

Oksana Kel; Amr Tamimi; Megan C. Thielges; M. D. Fayer

The ultrafast dynamics in the interior of planar aligned multibilayers of 1,2-dilauroyl-sn-glycero-3-phosphocholine (dilauroylphosphatidylcholine, DLPC) are investigated using 2D IR vibrational echo spectroscopy. The nonpolar and water insoluble vibrational dynamics probe, tungsten hexacarbonyl (W(CO)6), is located in the alkane interior of the membranes. The 2D IR experiments conducted on the antisymmetric CO stretching mode measure spectral diffusion caused by the structural dynamics of the membrane from ~200 fs to ~200 ps as a function of the number of water molecules hydrating the head groups and as a function of cholesterol content for a fixed hydration level. FT-IR studies of the lipid bilayers and the model liquids, hexadecane and bis(2-ethylhexyl) succinate, indicate that as the number of hydrating water molecules increases from 2 to 16, there are structural changes in the membrane that partition some of the W(CO)6 into the ester region of DLPC. However, the 2D IR measurements, which are made solely on the W(CO)6 in the alkane regions, show that the level of hydration has no observable impact on the interior membrane dynamics. FT-IR spectra and 2D IR experiments on samples with cholesterol concentrations from 0 to 60% demonstrate that there is a change in the membrane structure and an abrupt change in dynamics at 35% cholesterol. The dynamics are independent of cholesterol content from 10 to 35%. At 35%, the dynamics become slower and remain unchanged from 35 to 60% cholesterol.


Journal of the American Chemical Society | 2013

Dynamics in the interior of AOT lamellae investigated with two-dimensional infrared spectroscopy.

S. K. Karthick Kumar; Amr Tamimi; M. D. Fayer

The dynamics inside the organic regions of aerosol-OT (AOT)/water mixtures in the lamellar mesophase, bicontinuous cubic (BC) phase, and in an analogous molecule without the charged sulfonate headgroup are investigated by observing spectral diffusion, orientational relaxation and population relaxation using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy and IR pump-probe experiments on the asymmetric CO stretch of a vibrational probe, tungsten hexacarbonyl (W(CO)6). The water layer thickness between the bilayer planes in the lamellar phase was varied. For comparison, the dynamics of W(CO)6 in the normal liquid bis(2-ethylhexyl) succinate (EHS), which is analogous to AOT but has no charged sulfonate headgroup, were also studied. The 2D IR experiments measure spectral diffusion, which results from the structural evolution of the system. Spectral diffusion is quantified by the frequency-frequency correlation function (FFCF). In addition to a homogeneous component, the FFCFs are biexponential decays with fast and slow time components of ∼12.5 and ∼150 ps in the lamellar phase. Both components of the FFCF are independent of the number of water molecules per headgroup for the lamellae, but they slow somewhat in the BC phase. The dynamics in the ordered phases are in sharp contrast to the dynamics in EHS, which displays fast and slow components of the FFCF of 5 and 80 ps, respectively. As the hydration level of AOT increases, vibrational lifetime decreases, suggesting some change in the local environment of W(CO)6 with water content.


Journal of Physical Chemistry B | 2016

Ionic Liquid Dynamics Measured with 2D IR and IR Pump–Probe Experiments on a Linear Anion and the Influence of Potassium Cations

Amr Tamimi; M. D. Fayer

The room-temperature ionic liquid EmimNTf2 (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) was studied with two-dimensional infrared (2D IR) spectroscopy and polarization selective pump-probe (PSPP) experiments using low-concentration selenocyanate (SeCN(-)) as the vibrational probe. SeCN(-) was added as EmimSeCN, which keeps the cation the same. KSeCN was also used, so K(+) was added. Two 2D IR polarization configurations were employed: ⟨XXXX⟩ (all pulses have the same polarization) and ⟨XXYY⟩ (the first two pulse polarizations are perpendicular to that of the third pulse and the echo). The spectral diffusion differs for the two configurations, demonstrating that reorientation-induced spectral diffusion, in addition to structural spectral diffusion (SSD), plays a role in the observed dynamics. The SSD was extracted from the 2D IR time-dependent data. The samples with EmimSeCN have dynamics on several fast time scales; however, when KSeCN is used, both the PPSP anisotropy decay and the 2D IR decays have low amplitude offsets (nondecaying values at long times). The size of the offsets increased with increased K(+) concentration. These results are explained in terms of a two-ensemble model. A small fraction of the SeCN(-) is located in the regions modified by the presence of K(+), causing a substantial slowing of the SeCN(-) orientational relaxation and spectral diffusion. Having a small ensemble of SeCN(-) that undergoes very slow dynamics is sufficient to explain the offsets. For the major ensemble, the dynamics with and without K(+) are the same.


Journal of Physical Chemistry B | 2015

Molecular Anion Hydrogen Bonding Dynamics in Aqueous Solution

Rongfeng Yuan; Chang Yan; Amr Tamimi; M. D. Fayer

The dynamic nature of hydrogen bonding between a molecular anion, selenocyanate (SeCN(-)), and water in aqueous solution (D2O) is addressed using FT-IR spectroscopy, two-dimensional infrared (2D IR) vibrational echo spectroscopy, and polarization selective IR pump-probe (PSPP) experiments performed on the CN stretching mode. The CN absorption spectrum is asymmetric with a wing on the low frequency (red) side of the line in contrast to the spectrum in the absence of hydrogen bonding. It is shown that the red wing is the result of an increase in the CN stretch transition dipole moment due to the effect of hydrogen bonding (non-Condon effect). This non-Condon effect is similar in nature to observations on pure water and other nonionic systems where hydrogen bonding enhances the extinction coefficient. The 2D IR measurements of spectral diffusion (solvent structural evolution) yield a time constant of 1.5 ps, which is within error the same as that of the OH stretch of HOD in D2O (1.4 ps). The orientational relaxation of SeCN(-) measured by PSPP experiments is long (4.04 ps) compared to the spectral diffusion time. The population decay at or near the absorption line center is a single-exponential decay of 37.4 ± 0.3 ps, the vibrational lifetime. However, on the red side of the line the decay is biexponential with a low amplitude, fast component; on the blue side of the line there is a low amplitude, fast growth followed by the lifetime decay. Both of the fast components have 1.5 ps time constants, which is the spectral diffusion time. The fast components of the population decays are the results of the non-Condon effect that causes the red side of the line to be over pumped by the pump pulse. Spectral diffusion then produces the fast decay component on the red side of the line and the growth on the blue side of the line as the excess initial population on the red side produces a net population flow from red to blue.


Journal of Chemical Physics | 2016

Carbon dioxide in an ionic liquid: Structural and rotational dynamics

Chiara H. Giammanco; Patrick L. Kramer; Steven A. Yamada; Jun Nishida; Amr Tamimi; M. D. Fayer

Ionic liquids (ILs), which have widely tunable structural motifs and intermolecular interactions with solutes, have been proposed as possible carbon capture media. To inform the choice of an optimal ionic liquid system, it can be useful to understand the details of dynamics and interactions on fundamental time scales (femtoseconds to picoseconds) of dissolved gases, particularly carbon dioxide (CO2), within the complex solvation structures present in these uniquely organized materials. The rotational and local structural fluctuation dynamics of CO2 in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2) were investigated by using ultrafast infrared spectroscopy to interrogate the CO2 asymmetric stretch. Polarization-selective pump probe measurements yielded the orientational correlation function of the CO2 vibrational transition dipole. It was found that reorientation of the carbon dioxide occurs on 3 time scales: 0.91 ± 0.03, 8.3 ± 0.1, 54 ± 1 ps. The initial two are attributed to restricted wobbling motions originating from a gating of CO2 motions by the IL cations and anions. The final (slowest) decay corresponds to complete orientational randomization. Two-dimensional infrared vibrational echo (2D IR) spectroscopy provided information on structural rearrangements, which cause spectral diffusion, through the time dependence of the 2D line shape. Analysis of the time-dependent 2D IR spectra yields the frequency-frequency correlation function (FFCF). Polarization-selective 2D IR experiments conducted on the CO2 asymmetric stretch in the parallel- and perpendicular-pumped geometries yield significantly different FFCFs due to a phenomenon known as reorientation-induced spectral diffusion (RISD), revealing strong vector interactions with the liquid structures that evolve slowly on the (independently measured) rotation time scales. To separate the RISD contribution to the FFCF from the structural spectral diffusion contribution, the previously developed first order Stark effect RISD model is reformulated to describe the second order (quadratic) Stark effect--the first order Stark effect vanishes because CO2 does not have a permanent dipole moment. Through this analysis, we characterize the structural fluctuations of CO2 in the ionic liquid solvation environment, which separate into magnitude-only and combined magnitude and directional correlations of the liquids time dependent electric field. This new methodology will enable highly incisive comparisons between CO2 dynamics in a variety of ionic liquid systems.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Size-dependent ultrafast structural dynamics inside phospholipid vesicle bilayers measured with 2D IR vibrational echoes

Oksana Kel; Amr Tamimi; M. D. Fayer

Significance Plasma membranes hold a wide variety of proteins and other biomolecules that are essential to cell functions. In addition, membranes are the solvent bath, which is intimately coupled to transmembrane processes. Membranes are frequently modeled using planar phospholipid bilayers and vesicles. However, vesicles are small and have relatively small radii of curvature. Research has shown that the bilayer curvature influences structural and thermodynamic properties, but much less is known about the interior dynamics of model membranes. Here we address ultrafast structural dynamics inside vesicle and planar bilayers using 2D IR vibrational echo experiments. The results show that the interior dynamics depend on the phospholipid chain length and are curvature dependent, with the dynamics becoming faster as the vesicle size decreases. The ultrafast structural dynamics inside the bilayers of dilauroylphosphatidylcholine (DLPC) and dipalmitoylphosphatidylcholine vesicles with 70, 90, and 125 nm diameters were directly measured with 2D IR vibrational echo spectroscopy. The antisymmetric CO stretch of tungsten hexacarbonyl was used as a vibrational probe and provided information on spectral diffusion (structural dynamics) in the alkyl region of the bilayers. Although the CO stretch absorption spectra remain the same, the interior structural dynamics become faster as the size of the vesicles decrease, with the size dependence greater for dipalmitoylphosphatidylcholine than for DLPC. As DLPC vesicles become larger, the interior dynamics approach those of the planar bilayer.


Journal of Physical Chemistry B | 2016

Alkyl Chain Length Dependence of the Dynamics and Structure in the Ionic Regions of Room-Temperature Ionic Liquids.

Amr Tamimi; Heather E. Bailey; M. D. Fayer

The dynamics of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide room-temperature ionic liquids (RTILs) with carbon chain lengths of 2, 4, 6, and 10 were studied by measuring the orientational and spectral diffusion dynamics of the vibrational probe SeCN(-). Vibrational absorption spectra, two-dimensional infrared (2D IR), and polarization-selective pump-probe (PSPP) experiments were performed on the CN stretch. In addition, optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments were performed on the bulk liquids. The PSPP experiments yielded triexponential anisotropy decays, which were analyzed with the wobbling-in-a-cone model. The slowest decay, the complete orientational randomization, slows with increasing chain length in a hydrodynamic trend consistent with the increasing viscosity. The shortest time scale wobbling motions are insensitive to chain length, while the intermediate time scale wobbling slows mildly as the chain length increases. The 2D IR spectra measured in parallel (⟨XXXX⟩) and perpendicular (⟨XXYY⟩) polarization configurations gave different decays, showing that reorientation-induced spectral diffusion (RISD) contributes to the dynamics. The spectral diffusion caused by the RTIL structural fluctuations was obtained by removing the RISD contributions. The faster structural fluctuations are relatively insensitive to chain length. The slowest structural fluctuations slow substantially when going from Emim (2 carbon chain) to Bmim (4 carbon chain) and slow further, but more gradually, as the chain length is increased. It was shown previously that K(+) causes local ion clustering in the Emim RTIL. The K(+) effect increases with increasing chain length. The OHD-OKE measured complete structural randomization times slow substantially with increasing chain length and are much slower than the dynamics experienced by the SeCN(-) located in the ionic regions of the RTILs.


Journal of the American Chemical Society | 2017

Dynamics in a Room-Temperature Ionic Liquid from the Cation Perspective: 2D IR Vibrational Echo Spectroscopy

Steven A. Yamada; Heather E. Bailey; Amr Tamimi; Chunya Li; M. D. Fayer

The dynamics of the room-temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2) were investigated with two-dimensional infrared (2D IR) vibrational echo spectroscopy and polarization selective pump-probe (PSPP) experiments. The CN stretch frequency of a modified Bmim+ cation (2-SeCN-Bmim+), in which a SeCN moiety was substituted onto the C-2 position of the imidazolium ring, was used as a vibrational probe. A major result of the 2D IR experiments is the observation of a long time scale structural spectral diffusion component of 600 ps in addition to short and intermediate time scales similar to those measured for selenocyanate anion (SeCN-) dissolved in BmimNTf2. In contrast to 2-SeCN-Bmim+, SeCN- samples its inhomogeneous line width nearly an order of magnitude faster than the complete structural randomization time of neat BmimNTf2 liquid (870 ± 20 ps) measured with optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments. The orientational correlation function obtained from PSPP experiments on 2-SeCN-Bmim+ exhibits two periods of restricted angular diffusion (wobbling-in-a-cone) followed by complete orientational randomization on a time scale of 900 ± 20 ps, significantly slower than observed for SeCN- but identical within experimental error to the complete structural randomization time of BmimNTf2. The experiments indicate that 2-SeCN-Bmim+ is sensitive to local motions of the ionic region that influence the spectral diffusion and reorientation of small, anionic, and neutral molecules as well as significantly slower, longer-range fluctuations that are responsible for complete randomization of the liquid structure.

Collaboration


Dive into the Amr Tamimi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge