Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy A. Cordones is active.

Publication


Featured researches published by Amy A. Cordones.


Journal of Physical Chemistry Letters | 2014

Atomic-scale perspective of ultrafast charge transfer at a dye-semiconductor interface

Katrin R. Siefermann; C. D. Pemmaraju; Stefan Neppl; Andrey Shavorskiy; Amy A. Cordones; Josh Vura-Weis; Daniel Slaughter; Felix Sturm; Fabian Weise; Hendrik Bluhm; Matthew L. Strader; Hana Cho; Ming Fu Lin; Camila Bacellar; Champak Khurmi; Jinghua Guo; G. Coslovich; Robert A. Kaindl; Robert W. Schoenlein; A. Belkacem; Daniel M. Neumark; Stephen R. Leone; Dennis Nordlund; Hirohito Ogasawara; O. Krupin; J. J. Turner; W. F. Schlotter; Michael R. Holmes; Marc Messerschmidt; Michael P. Minitti

Understanding interfacial charge-transfer processes on the atomic level is crucial to support the rational design of energy-challenge relevant systems such as solar cells, batteries, and photocatalysts. A femtosecond time-resolved core-level photoelectron spectroscopy study is performed that probes the electronic structure of the interface between ruthenium-based N3 dye molecules and ZnO nanocrystals within the first picosecond after photoexcitation and from the unique perspective of the Ru reporter atom at the center of the dye. A transient chemical shift of the Ru 3d inner-shell photolines by (2.3 ± 0.2) eV to higher binding energies is observed 500 fs after photoexcitation of the dye. The experimental results are interpreted with the aid of ab initio calculations using constrained density functional theory. Strong indications for the formation of an interfacial charge-transfer state are presented, providing direct insight into a transient electronic configuration that may limit the efficiency of photoinduced free charge-carrier generation.


Nano Letters | 2011

Direct Measurement of Off-State Trapping Rate Fluctuations in Single Quantum Dot Fluorescence

Amy A. Cordones; Teresa J. Bixby; Stephen R. Leone

Fluorescence decay times measured during the off-state of single CdSe/ZnS quantum dot blinking are found to decrease with increasing off-state duration, contradicting the charging model widely considered to explain the blinking phenomenon. The change in the nonradiative process of a short off-state duration compared to a long one is investigated here through simultaneous measurement of fluorescence decay and blinking behavior. The results are investigated in the framework of two models based on fluctuating trapping rates.


Journal of the American Chemical Society | 2012

Probing the Interaction of Single Nanocrystals with Inorganic Capping Ligands: Time-Resolved Fluorescence from CdSe–CdS Quantum Dots Capped with Chalcogenidometalates

Amy A. Cordones; Marcus Scheele; A. Paul Alivisatos; Stephen R. Leone

Fluorescence intermittency and excited-state decay measurements are carried out on single CdSe-CdS core-shell quantum dots (QD) stabilized with chalcogenidometalates (ChaMs, In(2)Se(4)(2-), or Sn(2)S(6)(4-))(-). The results are used to probe the nature and distribution of charge trapping sites in the QD local environment. A comparison is made between capping by a neutral organic ligand (oleylamine) and a small inorganic ligand with high charge density (ChaMs). Overall, shorter on-state durations and longer off-state durations are observed for the ChaMs. These results indicate an increased density of charge trapping sites and increased stabilization of surface-trapped charges. By varying the thickness of the CdS shell, we identified hole trapping by the ligand as the dominant charging mechanism in ChaM-capped QDs. Faster excited-state decay rates are measured for the ChaM-capped QDs, highlighting the role of strongly stabilized trapped charges in this system. Using cyclic voltammetry measurements of the ChaMs, an energy level diagram is constructed relating the ChaMs and CdSe-CdS-QDs that explains their superior performance as active layers in photodetectors.


Energy and Environmental Science | 2016

Electronic and nuclear contributions to time-resolved optical and X-ray absorption spectra of hematite and insights into photoelectrochemical performance

Dugan Hayes; Ryan G. Hadt; Jonathan D. Emery; Amy A. Cordones; Alex B. F. Martinson; Megan L. Shelby; Kelly A. Fransted; Peter D. Dahlberg; Jiyun Hong; Xiaoyi Zhang; Qingyu Kong; Robert W. Schoenlein; Lin X. Chen

Ultrafast time-resolved studies of photocatalytic thin films can provide a wealth of information crucial for understanding and thereby improving the performance of these materials by directly probing electronic structure, reaction intermediates, and charge carrier dynamics. The interpretation of transient spectra, however, can be complicated by thermally induced structural distortions, which appear within the first few picoseconds following excitation due to carrier–phonon scattering. Here we present a comparison of ex situ steady-state thermal difference spectra and transient absorption spectra spanning from NIR to hard X-ray energies of hematite thin films grown by atomic layer deposition. We find that beyond the first 100 picoseconds, the transient spectra measured for all excitation wavelengths and probe energies are almost entirely due to thermal effects as the lattice expands in response to the ultrafast temperature jump and then cools to room temperature on the microsecond timescale. At earlier times, a broad excited state absorption band that is assigned to free carriers appears at 675 nm, and the lifetime and shape of this feature also appear to be mostly independent of excitation wavelength. The combined spectroscopic data, which are modeled with density functional theory and full multiple scattering calculations, support an assignment of the optical absorption spectrum of hematite that involves two LMCT bands that nearly span the visible spectrum. Our results also suggest a framework for shifting the ligand-to-metal charge transfer absorption bands of ferric oxide films from the near-UV further into the visible part of the solar spectrum to improve solar conversion efficiency.


Journal of the American Chemical Society | 2017

Light-Induced Radical Formation and Isomerization of an Aromatic Thiol in Solution Followed by Time-Resolved X-ray Absorption Spectroscopy at the Sulfur K-Edge

Miguel Ochmann; Inga von Ahnen; Amy A. Cordones; Abid Hussain; Jae Hyuk Lee; Kiryong Hong; Katrin Adamczyk; Oriol Vendrell; Tae Kyu Kim; Robert W. Schoenlein; Nils Huse

We applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ∼70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemical reaction pathways and transient products of sulfur-containing molecules in solution.


Structural Dynamics | 2017

Picosecond sulfur K-edge X-ray absorption spectroscopy with applications to excited state proton transfer

Benjamin E. Van Kuiken; Matthew Ross; Matthew L. Strader; Amy A. Cordones; Hana Cho; Jae Hyuk Lee; Robert W. Schoenlein; Munira Khalil

Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (∼2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400 nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps) and decays within 6 ns. The second transient species forms on a timescale of ∼400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowest-lying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.


22nd International Conference on the Application of Accelerators in Research and Industry, CAARI 2012 | 2013

Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

Andrey Shavorskiy; Amy A. Cordones; Josh Vura-Weis; Katrin R. Siefermann; Daniel Slaughter; Felix Sturm; Fabian Weise; Hendrik Bluhm; Matthew L. Strader; Hana Cho; Ming Fu Lin; Camila Bacellar; Champak Khurmi; Marcus P. Hertlein; Jinghua Guo; Tolek Tyliszczak; David Prendergast; G. Coslovich; Robert A. Kaindl; Robert W. Schoenlein; A. Belkacem; Thorsten Weber; Daniel M. Neumark; Stephen R. Leone; Dennis Nordlund; Hirohito Ogasawara; Anders Nilsson; O. Krupin; Joshua J. Turner; W. F. Schlotter

X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.


Nature Communications | 2018

Transient metal-centered states mediate isomerization of a photochromic ruthenium-sulfoxide complex

Amy A. Cordones; Jae Hyuk Lee; Kiryong Hong; Hana Cho; Komal Garg; Martial Boggio-Pasqua; Jeffrey J. Rack; Nils Huse; Robert W. Schoenlein; Tae Kyu Kim

Ultrafast isomerization reactions underpin many processes in (bio)chemical systems and molecular materials. Understanding the coupled evolution of atomic and molecular structure during isomerization is paramount for control and rational design in molecular science. Here we report transient X-ray absorption studies of the photo-induced linkage isomerization of a Ru-based photochromic molecule. X-ray spectra reveal the spin and valence charge of the Ru atom and provide experimental evidence that metal-centered excited states mediate isomerization. Complementary X-ray spectra of the functional ligand S atoms probe the nuclear structural rearrangements, highlighting the formation of two metal-centered states with different metal-ligand bonding. These results address an essential open question regarding the relative roles of transient charge-transfer and metal-centered states in mediating photoisomerization. Global temporal and spectral data analysis combined with time-dependent density functional theory reveals a complex mechanism for photoisomerization with atomic details of the transient molecular and electronic structure not accessible by other means.An essential open question in functional transition metal complexes is the relative roles of charge-transfer and metal-centered excited states. Here the authors identify the important role of metal-centered excited states in the linkage photoisomerization of a photochromic Ru-sulfoxide complex.


Journal of the American Chemical Society | 2018

UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge

Miguel Ochmann; Abid Hussain; Inga von Ahnen; Amy A. Cordones; Kiryong Hong; Jae Hyuk Lee; Rory Ma; Katrin Adamczyk; Tae Kyu Kim; Robert W. Schoenlein; Oriol Vendrell; Nils Huse

We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH2S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.


Nature Communications | 2018

Author Correction: Generation and characterization of ultrathin free-flowing liquid sheets

J. D. Koralek; J. B. Kim; Petr Brůža; Chandra Curry; Zhijiang Chen; Hans A. Bechtel; Amy A. Cordones; Philipp Sperling; S. Toleikis; Jan Kern; Stefan Moeller; S. H. Glenzer; Daniel P. DePonte

The original version of this article omitted the following from the Acknowledgements:‘P.B. was funded by the ELI Extreme Light Infrastructure Phase 2 (CZ.02.1.01/0.0/0.0/15008/0000162) from the European Regional Development Fund and the EUCALL project funded from the EU Horizon 2020 research and innovation programme under grant agreement No 654220,’ which replaces the previous ‘P.B. was funded by the ELI Extreme Light Infrastructure Phase 2 (CZ.02.1.01/0.0/0.0/15008/0000162) from the European Regional Development Fund.’This has been corrected in both the PDF and HTML versions of the article

Collaboration


Dive into the Amy A. Cordones's collaboration.

Top Co-Authors

Avatar

Robert W. Schoenlein

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hana Cho

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew L. Strader

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kiryong Hong

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

A. Belkacem

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrey Shavorskiy

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel M. Neumark

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel Slaughter

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dennis Nordlund

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge