Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy B. Heimberger is active.

Publication


Featured researches published by Amy B. Heimberger.


Journal of Clinical Oncology | 2010

Immunologic Escape After Prolonged Progression-Free Survival With Epidermal Growth Factor Receptor Variant III Peptide Vaccination in Patients With Newly Diagnosed Glioblastoma

John H. Sampson; Amy B. Heimberger; Gary E. Archer; Kenneth D. Aldape; Allan H. Friedman; Henry S. Friedman; Mark R. Gilbert; James E. Herndon; Roger E. McLendon; Duane Mitchell; David A. Reardon; Raymond Sawaya; Robert J. Schmittling; Weiming Shi; James J. Vredenburgh; Darell D. Bigner

PURPOSE Immunologic targeting of tumor-specific gene mutations may allow precise eradication of neoplastic cells without toxicity. Epidermal growth factor receptor variant III (EGFRvIII) is a constitutively activated and immunogenic mutation not expressed in normal tissues but widely expressed in glioblastoma multiforme (GBM) and other neoplasms. PATIENTS AND METHODS A phase II, multicenter trial was undertaken to assess the immunogenicity of an EGFRvIII-targeted peptide vaccine and to estimate the progression-free survival (PFS) and overall survival (OS) of vaccinated patients with newly diagnosed EGFRvIII-expressing GBM with minimal residual disease. Intradermal vaccinations were given until toxicity or tumor progression was observed. Sample size was calculated to differentiate between PFS rates of 20% and 40% 6 months after vaccination. RESULTS There were no symptomatic autoimmune reactions. The 6-month PFS rate after vaccination was 67% (95% CI, 40% to 83%) and after diagnosis was 94% (95% CI, 67% to 99%; n = 18). The median OS was 26.0 months (95% CI, 21.0 to 47.7 months). After adjustment for age and Karnofsky performance status, the OS of vaccinated patients was greater than that observed in a control group matched for eligibility criteria, prognostic factors, and temozolomide treatment (hazard ratio, 5.3; P = .0013; n = 17). The development of specific antibody (P = .025) or delayed-type hypersensitivity (P = .03) responses to EGFRvIII had a significant effect on OS. At recurrence, 82% (95% CI, 48% to 97%) of patients had lost EGFRvIII expression (P < .001). CONCLUSION EGFRvIII-targeted vaccination in patients with GBM warrants investigation in a phase III, randomized trial.


Clinical Cancer Research | 2005

Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients

Amy B. Heimberger; Roman Hlatky; Dima Suki; David J. Yang; Jeff Weinberg; Mark R. Gilbert; Raymond Sawaya; Kenneth D. Aldape

Purpose: The epidermal growth factor receptor (EGFR) is overexpressed in ∼50% to 60% of glioblastoma multiforme tumors, and the most common EGFR mutant, EGFRvIII, is expressed in 24% to 67% of cases. We sought to determine whether glioblastoma multiforme expression of either overexpressed wild-type EGFR or the mutant EGFRvIII is an independent predictor of overall patient survival. Experimental Design: Glioblastoma multiforme patients (n = 196) underwent a ≥95% volumetric tumor resection followed by conformal radiation. Their EGFR and EGFRvIII status was determined by immunohistochemistry and survival analyses were done. Results: In our study of glioblastoma multiforme patients, 46% (n = 91) failed to express EGFR, 54% (n = 105) had overexpression of the wild-type EGFR, and 31% (n = 61) also expressed the EGFRvIII. Patients within groups expressing the EGFR, EGFRvIII, or lacking EGFR expression did not differ in age, sex, Karnofsky performance scale score, extent of tumor resection, or radiation. The median overall survival times for patients with tumors having EGFR expression absent, overexpressed only, or mutant (EGFRvIII) were 0.96, 0.98, and 1.07 years, respectively. However, for patients surviving ≥1 year, these values were 2.03, 2.02, and 1.21 years (P < 0.0001; log-rank test comparing EGFRvIII with all others). This effect remained significant in the multivariate analysis after adjustment for all other cofactors including age and Karnofsky performance scale score (rate ratio 4.34; 95% confidence interval, 2.21-8.51). Conclusions: Neither the overexpressed wild-type EGFR nor EGFRvIII was an independent predictor of median overall survival in this selected cohort of patients who underwent extensive tumor resection. However, in patients surviving ≥1 year, the expression of EGFRvIII was an independent negative prognostic indicator.


Neuro-oncology | 2006

The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses

S. Farzana Hussain; David J. Yang; Dima Suki; Kenneth D. Aldape; Elizabeth A. Grimm; Amy B. Heimberger

Little is known about the immune performance and interactions of CNS microglia/macrophages in glioma patients. We found that microglia/macrophages were the predominant immune cell infiltrating gliomas ( approximately 1% of total cells); others identified were myeloid dendritic cells (DCs), plasmacytoid DCs, and T cells. We isolated and analyzed the immune functions of CD11b/c+CD45+ glioma-infiltrating microglia/macrophages (GIMs) from postoperative tissue specimens of glioma patients. Although GIMs expressed substantial levels of Toll-like receptors (TLRs), they did not appear stimulated to produce pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin 1, or interleukin 6), and in vitro, lipopolysaccharides could bind TLR-4 but could not induce GIM-mediated T-cell proliferation. Despite surface major histocompatibility complex class II expression, they lacked expression of the costimulatory molecules CD86, CD80, and CD40 critical for T-cell activation. Ex vivo, we demonstrate a corresponding lack of effector/activated T cells, as glioma-infiltrating CD8+ T cells were phenotypically CD8+CD25-. By contrast, there was a prominent population of regulatory CD4 T cells (CD4+CD25+FOXP3+) infiltrating the tumor. We conclude that while GIMs may have a few intact innate immune functions, their capacity to be stimulated via TLRs, secrete cytokines, upregulate costimulatory molecules, and in turn activate antitumor effector T cells is not sufficient to initiate immune responses. Furthermore, the presence of regulatory T cells may also contribute to the lack of effective immune activation against malignant human gliomas.


Neuro-oncology | 2010

Glioma cancer stem cells induce immunosuppressive macrophages/microglia

Adam Wu; Jun Wei; Ling Yuan Kong; Yongtao Wang; Waldemar Priebe; Wei Qiao; Raymond Sawaya; Amy B. Heimberger

Macrophages (MΦs)/microglia that constitute the dominant tumor-infiltrating immune cells in glioblastoma are recruited by tumor-secreted factors and are induced to become immunosuppressive and tumor supportive (M2). Glioma cancer stem cells (gCSCs) have been shown to suppress adaptive immunity, but their role in innate immunity with respect to the recruitment and polarization of MΦs/microglia is unknown. The innate immunosuppressive properties of the gCSCs were characterized based on elaborated MΦ inhibitory cytokine-1 (MIC-1), transforming growth factor (TGF-β1), soluble colony-stimulating factor (sCSF), recruitment of monocytes, inhibition of MΦ/microglia phagocytosis, induction of MΦ/microglia cytokine secretion, and the inhibition of T-cell proliferation. The role of the signal transducer and activator of transcription 3 (STAT3) in mediating innate immune suppression was evaluated in the context of the functional assays. The gCSCs produced sCSF-1, TGF-β1, and MIC-1, cytokines known to recruit and polarize the MΦs/microglia to become immunosuppressive. The gCSC-conditioned medium polarized the MΦ/microglia to an M2 phenotype, inhibited MΦ/microglia phagocytosis, induced the secretion of the immunosuppressive cytokines interleukin-10 (IL-10) and TGF-β1 by the MΦs/microglia, and enhanced the capacity of MΦs/microglia to inhibit T-cell proliferation. The inhibition of phagocytosis and the secretion of IL-10 were reversed when the STAT3 pathway was blocked in the gCSCs. The gCSCs modulate innate immunity in glioblastoma by inducing immunosuppressive MΦs/microglia, and this capacity can be reversed by inhibiting phosphorylated STAT3.


Journal of Clinical Oncology | 2007

Epidermal Growth Factor Receptor Variant III Status Defines Clinically Distinct Subtypes of Glioblastoma

Christopher E. Pelloski; Karla V. Ballman; Alfred F. Furth; Li Zhang; E. Lin; Erik P. Sulman; Krishna Bhat; J. Matthew McDonald; W. K. Alfred Yung; Howard Colman; Shiao Y. Woo; Amy B. Heimberger; Dima Suki; Michael D. Prados; Susan M. Chang; Fred G. Barker; Jan C. Buckner; C. David James; Kenneth D. Aldape

PURPOSE The clinical significance of epidermal growth factor receptor variant III (EGFRvIII) expression in glioblastoma multiforme (GBM) and its relationship with other key molecular markers are not clear. We sought to evaluate the clinical significance of GBM subtypes as defined by EGFRvIII status. PATIENTS AND METHODS The expression of EGFRvIII was assessed by immunohistochemistry in 649 patients with newly diagnosed GBM. These data were then examined in conjunction with the expression of phospho-intermediates (in a subset of these patients) of downstream AKT and Ras pathways and YKL-40 as well as with known clinical risk factors, including the Radiation Therapy Oncology Groups recursive partitioning analysis (RTOG-RPA) class. RESULTS The RTOG-RPA class was highly predictive of survival in EGFRvIII-negative patients but much less predictive in EGFRvIII-positive patients. These findings were seen in both an initial test set (n = 268) and a larger validation set (n = 381). Similarly, activation of the AKT/MAPK pathways and YKL-40 positivity were predictive of poor outcome in EGFRvIII-negative patients but not in EGFRvIII-positive patients. Pair-wise combinations of markers identified EGFRvIII and YKL-40 as prognostically important. In particular, outcome in patients with EGFRvIII-negative/YKL-40-negative tumors was significantly better than the outcome in patients with the other three combinations of these two markers. CONCLUSION Established prognostic factors in GBM were not predictive of outcome in the EGFRvIII-positive subset, although this requires confirmation in independent data sets. GBMs negative for both EGFRvIII and YKL-40 show less aggressive behavior.


Neuro-oncology | 2011

Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma

John H. Sampson; Kenneth D. Aldape; Gary E. Archer; April Coan; Annick Desjardins; Allan H. Friedman; Henry S. Friedman; Mark R. Gilbert; James E. Herndon; Roger E. McLendon; Duane A. Mitchell; David A. Reardon; Raymond Sawaya; Robert J. Schmittling; Weiming Shi; J. J. Vredenburgh; Darell D. Bigner; Amy B. Heimberger

Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation widely expressed in glioblastoma multiforme (GBM) and other neoplasms, but absent from normal tissues. Immunotherapeutic targeting of EGFRvIII could eliminate neoplastic cells more precisely but may be inhibited by concurrent myelosuppressive chemotherapy like temozolomide (TMZ), which produces a survival benefit in GBM. A phase II, multicenter trial was undertaken to assess the immunogenicity of an experimental EGFRvIII-targeted peptide vaccine in patients with GBM undergoing treatment with serial cycles of standard-dose (STD) (200 mg/m(2) per 5 days) or dose-intensified (DI) TMZ (100 mg/m(2) per 21 days). All patients receiving STD TMZ exhibited at least a transient grade 2 lymphopenia, whereas those receiving DI TMZ exhibited a sustained grade 3 lymphopenia (<500 cells/μL). CD3(+) T-cell (P = .005) and B-cell (P = .004) counts were reduced significantly only in the DI cohort. Patients in the DI cohort had an increase in the proportion of immunosuppressive regulatory T cells (T(Reg); P = .008). EGFRvIII-specific immune responses developed in all patients treated with either regimen, but the DI TMZ regimen produced humoral (P = .037) and delayed-type hypersensitivity responses (P = .036) of greater magnitude. EGFRvIII-expressing tumor cells were also eradicated in nearly all patients (91.6%; CI(95): 64.0%-99.8%; P < .0001). The median progression-free survival (15.2 months; CI(95): 11.0-18.5 months; hazard ratio [HR] = 0.35; P = .024) and overall survival (23.6 months; CI(95): 18.5-33.1 months; HR = 0.23; P = .019) exceeded those of historical controls matched for entry criteria and adjusted for known prognostic factors. EGFRvIII-targeted vaccination induces patient immune responses despite therapeutic TMZ-induced lymphopenia and eliminates EGFRvIII-expressing tumor cells without autoimmunity.


Cancer Research | 2007

A Novel Small Molecule Inhibitor of Signal Transducers and Activators of Transcription 3 Reverses Immune Tolerance in Malignant Glioma Patients

S. Farzana Hussain; Ling Yuan Kong; Justin T. Jordan; Charles A. Conrad; Timothy Madden; Isabella Fokt; Waldemar Priebe; Amy B. Heimberger

Overcoming the profound immunosuppression in patients with solid cancers has impeded efficacious immunotherapy. Signal transducers and activators of transcription 3 (STAT3) has recently emerged as a potential target for effective immunotherapy, and in this study, we describe a novel small molecule inhibitor of STAT3 that can penetrate the central nervous system (CNS) in mice and in physiologically relevant doses in vitro and reverse tolerance in immune cells isolated from glioblastoma multiforme (GBM) patients. Specifically, it induces the expression of costimulatory molecules on peripheral macrophages and tumor-infiltrating microglia, stimulates the production of the immune-stimulatory cytokines interleukin 2 (IL-2), IL-4, IL-12, and IL-15, and induces proliferation of effector T cells from GBM patients that are refractory to CD3 stimulation. We show that the functional enhancement of immune responses after STAT3 inhibition is accompanied by up-regulation of several key intracellular signaling molecules that critically regulate T-cell and monocyte activation. Specifically, the phosphorylation of Syk (Tyr352) in monocytes and ZAP-70 (Tyr319) in T cells are enhanced by the STAT-3 inhibitor in marked contrast to toll-like receptor and T-cell receptor agonists, respectively. This novel small molecule STAT3 inhibitor has tremendous potential for clinical applications with its penetration into the CNS, easy parental administration, direct tumor cytotoxicity, and potent immune adjuvant responses in immunosuppressed cancer patients.


Molecular Cancer Therapeutics | 2009

An epidermal growth factor receptor variant III–targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme

John H. Sampson; Gary E. Archer; Duane A. Mitchell; Amy B. Heimberger; James E. Herndon; Denise Lally-Goss; Sharon McGehee-Norman; Alison Paolino; David A. Reardon; Allan H. Friedman; Henry S. Friedman; Darell D. Bigner

Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, such that their efficacy is ultimately limited by nonspecific toxicity. Immunologic targeting of tumor-specific gene mutations, however, may allow more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a consistent and tumor-specific mutation widely expressed in GBMs and other neoplasms. The safety and immunogenicity of a dendritic cell (DC)–based vaccine targeting the EGFRvIII antigen was evaluated in this study. Adults with newly diagnosed GBM, who had undergone gross-total resection and standard conformal external beam radiotherapy, received three consecutive intradermal vaccinations with autologous mature DCs pulsed with an EGFRvIII-specific peptide conjugated to keyhole limpet hemocyanin. The dose of DCs was escalated in cohorts of three patients. Patients were monitored for toxicity, immune response, radiographic and clinical progression, and death. No allergic reactions or serious adverse events were seen. Adverse events were limited to grade 2 toxicities. The maximum feasible dose of antigen-pulsed mature DCs was reached at 5.7 × 107 ± 2.9 × 107 SD without dose-limiting toxicity. EGFRvIII-specific immune responses were evident in most patients. The mean time from histologic diagnosis to vaccination was 3.6 ± 0.6 SD months. Median time to progression from vaccination was 6.8 months [95% confidence interval (C.I.95), 2.5–8.8], and median survival time from vaccination was 18.7 months (C.I.95, 14.5–25.6). Overall median survival from time of histologic diagnosis was 22.8 months (C.I.95, 17.5–29). This study establishes the EGFRvIII mutation as a safe and immunogenic tumor-specific target for immunotherapy. [Mol Cancer Ther 2009;8(10):2773–9]


Neuro-oncology | 2012

Consensus on the role of human cytomegalovirus in glioblastoma

Kristine Dziurzynski; Susan M. Chang; Amy B. Heimberger; Robert F. Kalejta; Stuart R Mc Gregor Dallas; Martine J. Smit; Liliana Soroceanu; Charles S. Cobbs

The human cytomegalovirus (HCMV) and glioma symposium was convened on April 17, 2011 in Washington, DC, and was attended by oncologists and virologists involved in studying the relationship between HCMV and gliomas. The purpose of the meeting was to reach a consensus on the role of HCMV in the pathology of gliomas and to clarify directions for future research. First, the group summarized data that describe how HCMV biology overlaps with the key pathways of cancer. Then, on the basis of published data and ongoing research, a consensus was reached that there is sufficient evidence to conclude that HCMV sequences and viral gene expression exist in most, if not all, malignant gliomas, that HCMV could modulate the malignant phenotype in glioblastomas by interacting with key signaling pathways; and that HCMV could serve as a novel target for a variety of therapeutic strategies. In summary, existing evidence supports an oncomodulatory role for HCMV in malignant gliomas, but future studies need to focus on determining the role of HCMV as a glioma-initiating event.


Clinical Cancer Research | 2008

Incidence and Prognostic Impact of FoxP3+ Regulatory T Cells in Human Gliomas

Amy B. Heimberger; Mohamed Abou-Ghazal; Chantal Reina-Ortiz; David S. Yang; Wei Sun; Wei Qiao; Nobuyoshi Hiraoka; Gregory N. Fuller

Purpose: The incidence of regulatory T cells (Treg) in intrinsic central nervous system malignancies is unknown. Immunotherapeutic approaches that inhibit the Treg population may be limited to a subset of patients with gliomas. Our hypothesis is that only the most malignant gliomas have a prominent glioma-infiltrating Treg population that contributes to the immunosuppressive biology and that the presence of Tregs is a negative prognostic variable. Experimental Design: We measured the incidence of Tregs in 135 glial tumors (including all pathologic types) in a glioma microarray using immunohistochemical analysis. Results were categorized according to the total number of Tregs within the tumors. Correlation of the presence of Tregs with prognosis was evaluated using univariate and multivariate analyses. Results: Tregs were not present in normal brain tissue and were very rarely found in low-grade gliomas and oligodendrogliomas. We observed significant differences in the prevalence of Tregs between astrocytic and oligodendroglial tumors, between tumors of different grades, and between different pathologic types of tumors. We identified Tregs most frequently in glioblastoma multiforme (GBM) but very rarely in low-grade astrocytomas. The presence of Tregs within GBMs did not alter the median survival in patients from whom the tumors were obtained. Conclusions: Treg infiltration differed significantly in the tumors according to lineage, pathology, and grade. Tregs seemed to have the highest predilection for tumors of the astrocytic lineage and specifically in the high-grade gliomas, such as GBM. In both univariate and multivariate analysis, the presence of Tregs in GBMs seemed to be prognostically neutral.

Collaboration


Dive into the Amy B. Heimberger's collaboration.

Top Co-Authors

Avatar

Jun Wei

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gregory N. Fuller

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Raymond Sawaya

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shouhao Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Konrad Gabrusiewicz

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ganesh Rao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ling Yuan Kong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Waldemar Priebe

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge