Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy B. Howell is active.

Publication


Featured researches published by Amy B. Howell.


Phytochemistry | 2000

The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro.

Lai Yeap Foo; Yinrong Lu; Amy B. Howell; Nicholi Vorsa

Ethyl acetate extracts of Sephadex LH20-purified proanthocyanidins of American cranberry (Vaccinium macrocarpon Ait.) exhibited potent biological activity by inhibiting adherence of uropathogenic isolates of P-fimbriated Escherichia coli bacteria to cellular surfaces containing alpha-Gal(1-->4)beta-Gal receptor sequences similar to those on epithelial cells in the urinary tract. The chemical structures of the proanthocyanidins were determined by 13C NMR, electrospray mass spectrometry, matrix-assisted laser absorption time-of-flight mass spectrometry and by acid catalyzed degradation with phloroglucinol. The proanthocyanidin molecules consisted predominantly of epicatechin units with mainly DP of 4 and 5 containing at least one A-type linkage. The procyanidin A2 was the most common terminating unit occurring about four times as frequently as the epicatechin monomer.


Journal of the Science of Food and Agriculture | 2010

Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders.

Ronald L. Prior; Ellen Fan; Hongping Ji; Amy B. Howell; Christian Nio; Mark J. Payne; Jess D. Reed

BACKGROUND The objective of this study was to validate an improved 4-dimethylaminocinnamaldehyde (DMAC) colorimetric method using a commercially available standard (procyanidin A2), for the standard method for quantification of proanthocyanidins (PACs) in cranberry powders, in order to establish dosage guidelines for the uropathogenic bacterial anti-adhesion effect of cranberry. RESULTS Commercially available cranberry samples were obtained (five from U.S. sources and six from European sources) for PAC quantification in five different analytical laboratories. Each laboratory extracted and analyzed the samples using the improved DMAC method. Within-laboratory variation (mean +/- SD) was 4.1 +/- 1.7% RSD (range, 2.3-6.1% RSD) and the between laboratory variability was 16.9 +/- 8.5% RSD (range, 8-32% RSD). For comparative purposes, the cranberry samples were alternatively quantified using weights of extracted PACs (gravimetric). The correlation coefficient between the two methods was 0.989. CONCLUSION This improved DMAC method provides a simple, robust and relatively specific spectrophotometric assay for total PACs in cranberry samples using commercially available procyanidin A2 dimer as a standard. DMAC is most useful within a given type of food such as cranberries, but may not be appropriate for comparing concentrations across different food types, particularly in those cases where large differences exist among the relative amounts of each oligomer and polymer.


BMC Infectious Diseases | 2010

Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study

Amy B. Howell; Henry Botto; Christophe Combescure; Anne Béatrice Blanc-Potard; Lluis Gausa; Tetsuro Matsumoto; Peter Tenke; Albert Sotto; Jean-Philippe Lavigne

BackgroundIngestion of cranberry (Vaccinium macrocarpon Ait.) has traditionally been utilized for prevention of urinary tract infections. The proanthocyanidins (PACs) in cranberry, in particular the A-type linkages have been implicated as important inhibitors of primarily P-fimbriated E. coli adhesion to uroepithelial cells. Additional experiments were required to investigate the persistence in urine samples over a broader time period, to determine the most effective dose per day and to determine if the urinary anti-adhesion effect following cranberry is detected within volunteers of different origins.MethodsTwo separate bioassays (a mannose-resistant hemagglutination assay and an original new human T24 epithelial cell-line assay) have assessed the ex-vivo urinary bacterial anti-adhesion activity on urines samples collected from 32 volunteers from Japan, Hungary, Spain and France in a randomized, double-blind versus placebo study. An in vivo Caenorhabditis elegans model was used to evaluate the influence of cranberry regimen on the virulence of E. coli strain.ResultsThe results indicated a significant bacterial anti-adhesion activity in urine samples collected from volunteers that consumed cranberry powder compared to placebo (p < 0.001). This inhibition was clearly dose-dependent, prolonged (until 24 h with 72 mg of PAC) and increasing with the amount of PAC equivalents consumed in each cranberry powder regimen. An in vivo Caenorhabditis elegans model showed that cranberry acted against bacterial virulence: E. coli strain presented a reduced ability to kill worms after a growth in urines samples of patients who took cranberry capsules. This effect is particularly important with the regimen of 72 mg of PAC.ConclusionsAdministration of PAC-standardized cranberry powder at dosages containing 72 mg of PAC per day may offer some protection against bacterial adhesion and virulence in the urinary tract. This effect may offer a nyctohemeral protection.


Critical Reviews in Food Science and Nutrition | 2002

Cranberry Proanthocyanidins and the Maintenance of Urinary Tract Health

Amy B. Howell

Abstract One of the major health benefits attributed to the ingestion of cranberry juice is the maintenance of urinary tract health. Traditionally, the juice was thought to cause acidification of the urine resulting in a bacteriostatic effect. However, recent research has demonstrated that a bacterial antiadhesion mechanism is responsible. Proanthocyanidins with unique molecular structures have been isolated from cranberry fruit that exhibit potent bacterial antiadhesion activity. Little is known about the bioavailability and structure–activity relationships of cranberry proanthocyanidins. Data on how certain structural features of the molecules can influence bioactivity and bioavailability are reviewed.


Advances in Nutrition | 2013

Cranberries and Their Bioactive Constituents in Human Health

Jeffrey B. Blumberg; Terri A. Camesano; Aedin Cassidy; Penny M. Kris-Etherton; Amy B. Howell; Claudine Manach; Luisa M Ostertag; Helmut Sies; Ann C. Skulas-Ray; Joseph A. Vita

Recent observational and clinical studies have raised interest in the potential health effects of cranberry consumption, an association that appears to be due to the phytochemical content of this fruit. The profile of cranberry bioactives is distinct from that of other berry fruit, being rich in A-type proanthocyanidins (PACs) in contrast to the B-type PACs present in most other fruit. Basic research has suggested a number of potential mechanisms of action of cranberry bioactives, although further molecular studies are necessary. Human studies on the health effects of cranberry products have focused principally on urinary tract and cardiovascular health, with some attention also directed to oral health and gastrointestinal epithelia. Evidence suggesting that cranberries may decrease the recurrence of urinary tract infections is important because a nutritional approach to this condition could lower the use of antibiotic treatment and the consequent development of resistance to these drugs. There is encouraging, but limited, evidence of a cardioprotective effect of cranberries mediated via actions on antioxidant capacity and lipoprotein profiles. The mixed outcomes from clinical studies with cranberry products could result from interventions testing a variety of products, often uncharacterized in their composition of bioactives, using different doses and regimens, as well as the absence of a biomarker for compliance to the protocol. Daily consumption of a variety of fruit is necessary to achieve a healthy dietary pattern, meet recommendations for micronutrient intake, and promote the intake of a diversity of phytochemicals. Berry fruit, including cranberries, represent a rich source of phenolic bioactives that may contribute to human health.


Food Microbiology | 2010

The effect of cranberry juice and cranberry proanthocyanidins on the infectivity of human enteric viral surrogates.

Xiaowei Su; Amy B. Howell; Doris H. D'Souza

The effect of cranberry juice (CJ) and cranberry proanthocyanidins (PAC) on the infectivity of human enteric virus surrogates, murine norovirus (MNV-1), feline calicivirus (FCV-F9), MS2(ssRNA) bacteriophage, and phiX-174(ssDNA) bacteriophage was studied. Viruses at high (approximately 7 log(10) PFU/ml) or low (approximately 5 log(10) PFU/ml) titers were mixed with equal volumes of CJ, 0.30, 0.60, and 1.20 mg/ml final PAC concentration, or water and incubated for 1 h at room temperature. Viral infectivity after treatments was evaluated using standardized plaque assays. At low viral titers, FCV-F9 was undetectable after exposure to CJ or the three tested PAC solutions. MNV-1 was reduced by 2.06 log(10) PFU/ml with CJ, and 2.63, 2.75, and 2.95 log(10) PFU/ml with 0.15, 0.30, and 0.60 mg/ml PAC, respectively. MS2 titers were reduced by 1.14 log(10) PFU/ml with CJ, and 0.55, 0.80, and 0.96 log(10) PFU/ml with 0.15, 0.30, and 0.60 mg/ml PAC, respectively. phi-X174 titers were reduced by 1.79 log(10) PFU/ml with CJ, and 1.95, 3.67, and 4.98 log(10) PFU/ml with PAC at 0.15, 0.30, and 0.60 mg/ml, respectively. Experiments using high titers showed similar trends but with decreased effects. CJ and PAC show promise as natural antivirals that could potentially be exploited for foodborne viral illness treatment and prevention.


Food Microbiology | 2010

Antiviral effects of cranberry juice and cranberry proanthocyanidins on foodborne viral surrogates--a time dependence study in vitro.

Xiaowei Su; Amy B. Howell; Doris H. D'Souza

Cranberry juice (CJ) and cranberry proanthocyanidins (PAC) are widely known for their antibacterial, antiviral, and pharmacological activities. The effect of CJ and cranberry PAC on the infectivity of foodborne viral surrogates, murine norovirus (MNV-1), feline calicivirus (FCV-F9), MS2 (ssRNA) bacteriophage, and ϕX-174 (ssDNA) bacteriophage after 0 min to 1h at room temperature was evaluated. Viruses at titers of ∼5log(10)PFU/ml were mixed with equal volumes of CJ at pH 2.6, CJ at pH 7.0, 0.30 mg/ml CJ PAC, 0.60mg/ml PAC, or water and incubated for 0, 10, 20, 30, 40, 50 min, and 1h at room temperature. Infectivity was determined using standard plaque assays. The viral reduction rates of the four tested viruses were found to vary considerably. Among the tested viruses, FCV-F9 titers were decreased the most by ∼5log(10)PFU/ml within 30 min. MS2 titers were decreased the least by only ∼1log(10)PFU/ml after 1h with CJ at pH 2.6 and 0.30 mg/ml PAC, and ∼0.5log(10)PFU/ml with CJ at pH 7.0 and 0.15 mg/ml PAC. MNV-1 and ϕ-X174 showed comparable titer reductions which was between that of FCV-F9 and MS2. In most cases, viral reduction within the first 10 min of treatment accounted for ≥50% of the total reduction. Transmission electron microscopy on FCV-F9 treated with CJ and PAC revealed structural changes. This study shows potential of using natural bioactive compounds for controlling foodborne viral diseases. Further studies are necessary to elucidate the mechanism of action of CJ components and to understand the differences in viral titer reduction profiles.


Journal of Dental Research | 2009

Cranberry Proanthocyanidins Inhibit MMP Production and Activity

Vu Dang La; Amy B. Howell; Daniel Grenier

Matrix metalloproteinases (MMPs) produced by resident and inflammatory cells in response to periodontopathogens play a major role in periodontal tissue destruction. Our aim was to investigate the effects of A-type cranberry proanthocyanidins (AC-PACs) on: (i) the production of various MMPs by human monocyte-derived macrophages stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS), and (ii) the catalytic activity of recombinant MMP-1 and MMP-9. The effects of AC-PACs on the expression of 5 protein kinases and the activity of nuclear factor-kappa B (NF-κB) p65 in macrophages stimulated with LPS were also monitored. Our results indicated that AC-PACs inhibited the production of MMPs in a concentration-dependent manner. Furthermore, the catalytic activity of MMP-1 and MMP-9 was also inhibited. The inhibition of MMP production was associated with reduced phosphorylation of key intracellular kinases and the inhibition of NF-κB p65 activity. AC-PACs thus show potential for the development of novel host-modulating strategies to inhibit MMP-mediated tissue destruction during periodontitis.


Analytical and Bioanalytical Chemistry | 2013

Quantifying and characterizing proanthocyanidins in cranberries in relation to urinary tract health

Christian G. Krueger; Jess D. Reed; Rodrigo P. Feliciano; Amy B. Howell

The “A-type” proanthocyanidins in cranberry fruit (Vaccinium macrocarpon Ait.) are bioactive components associated with prevention of urinary tract infections (UTI). Cranberry juice, fruit (fresh and dried), functional foods, and cranberry dietary supplements are promoted for prevention of UTI and for maintenance of urinary tract health (UTH), on the basis of their content of cranberry proanthocyanidins (c-PAC) with “A-type” interflavan bonds. With increasing consumer use of cranberries for maintenance of UTH and an expanding number of commercial cranberry products of different types, the availability of unified methods for measuring levels of c-PAC is important. This review discusses quantitative and qualitative analysis of c-PAC with “A-type” interflavan bonds in relation to their biological activity for UTI prevention. The integrity (including authenticity, standardization, efficacy, and safety) of cranberry fruit, juices, and dietary supplements may now be measured by using recent advances in mass spectrometry, liquid chromatography, production of c-PAC standards, and improved simple quantitative techniques.


Antimicrobial Agents and Chemotherapy | 2010

Anti-Porphyromonas gingivalis and Anti-Inflammatory Activities of A-Type Cranberry Proanthocyanidins

Vu Dang La; Amy B. Howell; Daniel Grenier

ABSTRACT A-type cranberry proanthocyanidins (AC-PACs) have recently been reported to be beneficial for human health, especially urinary tract health. The effect of these proanthocyanidins on periodontitis, a destructive disease of tooth-supporting tissues, needs to be investigated. The purpose of this study was to investigate the effects of AC-PACs on various virulence determinants of Porphyromonas gingivalis as well as on the inflammatory response of oral epithelial cells stimulated by this periodontopathogen. We examined the effects of AC-PACs on P. gingivalis growth and biofilm formation, adherence to human oral epithelial cells and protein-coated surfaces, collagenase activity, and invasiveness. We also tested the ability of AC-PACs to modulate the P. gingivalis-induced inflammatory response by human oral epithelial cells. Our results showed that while AC-PACs neutralized all the virulence properties of P. gingivalis in a dose-dependent fashion, they did not interfere with growth. They also inhibited the secretion of interleukin-8 (IL-8) and chemokine (C-C motif) ligand 5 (CCL5) but did not affect the secretion of IL-6 by epithelial cells stimulated with P. gingivalis. This anti-inflammatory effect was associated with reduced activation of the nuclear factor-κB (NF-κB) p65 pathway. AC-PACs may be potentially valuable bioactive molecules for the development of new strategies to treat and prevent P. gingivalis-associated periodontal diseases.

Collaboration


Dive into the Amy B. Howell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura A. Kresty

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jess D. Reed

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christian G. Krueger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Katherine M. Weh

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Ann Lila

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge