Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy C. Horton is active.

Publication


Featured researches published by Amy C. Horton.


Nature | 2008

The amphioxus genome and the evolution of the chordate karyotype.

Nicholas H. Putnam; Thomas Butts; David E. K. Ferrier; Rebecca F. Furlong; Uffe Hellsten; Takeshi Kawashima; Marc Robinson-Rechavi; Eiichi Shoguchi; Astrid Terry; Jr-Kai Yu; E grave; lia Benito-Gutiérrez; Inna Dubchak; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Igor V. Grigoriev; Amy C. Horton; Pieter J. de Jong; Jerzy Jurka; Vladimir V. Kapitonov; Yuji Kohara; Yoko Kuroki; Erika Lindquist; Susan Lucas; Kazutoyo Osoegawa; Len A. Pennacchio; Asaf Salamov; Yutaka Satou; Tatjana Sauka-Spengler; Jeremy Schmutz

Lancelets (‘amphioxus’) are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic ∼520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Plant Physiology | 2003

Analysis of the Small GTPase Gene Superfamily of Arabidopsis

Vanessa Vernoud; Amy C. Horton; Zhenbiao Yang; Erik Nielsen

Small GTP-binding proteins regulate diverse processes in eukaryotic cells such as signal transduction, cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. These proteins function as molecular switches that cycle between “active” and “inactive” states, and this cycle is linked to the binding and hydrolysis of GTP. The Arabidopsis genome contains 93 genes that encode small GTP-binding protein homologs. Phylogenetic analysis of these genes shows that plants contain Rab, Rho, Arf, and Ran GTPases, but no Ras GTPases. We have assembled complete lists of these small GTPases families, as well as accessory proteins that control their activity, and review what is known of the functions of individual members of these families in Arabidopsis. We also discuss the possible roles of these GTPases in relation to their similarity to orthologs with known functions and localizations in yeast and/or animal systems.


Development Genes and Evolution | 2008

Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs

Amy C. Horton; Navin R. Mahadevan; Carolina Minguillon; Kazutoyo Osoegawa; Daniel S. Rokhsar; Ilya Ruvinsky; Pieter J. de Jong; Malcolm Logan; Jeremy J. Gibson-Brown

T-box genes encode a family of DNA-binding transcription factors implicated in numerous developmental processes in all metazoans. The Tbx2/3/4/5 subfamily genes are especially interesting because of their key roles in the evolution of vertebrate appendages, eyes, and the heart, and, like the Hox genes, the longevity of their chromosomal linkage. A BAC library derived from the single male amphioxus (Branchiostoma floridae) used to sequence the amphioxus genome was screened for AmphiTbx2/3 and AmphiTbx4/5, yielding two independent clones containing both genes. Using comparative expression, genomic linkage, and phylogenetic analyses, we have reconstructed the evolutionary histories of these members of the T-box gene family. We find that the Tbx2–Tbx4 and Tbx3–Tbx5 gene pairs have maintained tight linkage in most animal lineages since their birth by tandem duplication, long before the divergence of protostomes and deuterostomes (e.g., arthropods and vertebrates) at least 600 million years ago, and possibly before the divergence of poriferans and cnidarians (e.g., sponges and jellyfish). Interestingly, we find that the gene linkage detected in all vertebrate genomes has been maintained in the primitively appendage-lacking, basal chordate, amphioxus. Although all four genes have been involved in the evolution of developmental programs regulating paired fin and (later) limb outgrowth and patterning, and most are also implicated in eye and heart development, linkage maintenance—often considered due to regulatory constraints imposed by limb, eye, and/or heart associated gene expression—is undoubtedly a consequence of other, much more ancient functional constraints.


Journal of the National Cancer Institute | 2015

CHRNA5 Risk Variant Predicts Delayed Smoking Cessation and Earlier Lung Cancer Diagnosis—A Meta-Analysis

Li-Shiun Chen; Rayjean J. Hung; Timothy B. Baker; Amy C. Horton; Rob Culverhouse; Nancy L. Saccone; Iona Cheng; Bo Deng; Younghun Han; Helen M. Hansen; Janet Horsman; Claire H. Kim; Sharon M. Lutz; Albert Rosenberger; Katja K. Aben; Angeline S. Andrew; Naomi Breslau; Shen Chih Chang; Aida Karina Dieffenbach; Hendrik Dienemann; Brittni Frederiksen; Jiali Han; Dorothy K. Hatsukami; Eric O. Johnson; Mala Pande; Margaret Wrensch; John McLaughlin; Vidar Skaug; Henricus F. M. van der Heijden; Jason A. Wampfler

BACKGROUND Recent meta-analyses show strong evidence of associations among genetic variants in CHRNA5 on chromosome 15q25, smoking quantity, and lung cancer. This meta-analysis tests whether the CHRNA5 variant rs16969968 predicts age of smoking cessation and age of lung cancer diagnosis. METHODS Meta-analyses examined associations between rs16969968, age of quitting smoking, and age of lung cancer diagnosis in 24 studies of European ancestry (n = 29 072). In each dataset, we used Cox regression models to evaluate the association between rs16969968 and the two primary phenotypes (age of smoking cessation among ever smokers and age of lung cancer diagnosis among lung cancer case patients) and the secondary phenotype of smoking duration. Heterogeneity across studies was assessed with the Cochran Q test. All statistical tests were two-sided. RESULTS The rs16969968 allele (A) was associated with a lower likelihood of smoking cessation (hazard ratio [HR] = 0.95, 95% confidence interval [CI] = 0.91 to 0.98, P = .0042), and the AA genotype was associated with a four-year delay in median age of quitting compared with the GG genotype. Among smokers with lung cancer diagnoses, the rs16969968 genotype (AA) was associated with a four-year earlier median age of diagnosis compared with the low-risk genotype (GG) (HR = 1.08, 95% CI = 1.04 to 1.12, P = 1.1*10(-5)). CONCLUSION These data support the clinical significance of the CHRNA5 variant rs16969968. It predicts delayed smoking cessation and an earlier age of lung cancer diagnosis in this meta-analysis. Given the existing evidence that this CHRNA5 variant predicts favorable response to cessation pharmacotherapy, these findings underscore the potential clinical and public health importance of rs16969968 in CHRNA5 in relation to smoking cessation success and lung cancer risk.


Journal of Molecular Evolution | 2003

Phylogenetic Analysis of New Plant Myosin Sequences

Magdalena Bezanilla; Amy C. Horton; Heather C. Sevener; Ralph S. Quatrano

We have sampled a large number of plant taxa, ranging from brown algae to angiosperms, for the presence of myosin sequences. Using phylogenetic analysis, we show that all but two of the new plant myosin sequences fall into two of three preexisting myosin classes. We identified two outlying sequences, which do not fall into any preexisting myosin class. Additionally, all genomic sequences encoding class XI myosins contain an intron in the region studied, suggesting that this genomic region has been conserved over at least 1 billion years of plant evolution. With these data, we can rapidly and consistently classify partial myosin sequences from plants. Our data show that plant myosins do not have clear orthologues in other kingdoms, providing interesting insights into the diversification of myosins.


Evolution & Development | 2006

The amphioxus T‐box gene, AmphiTbx15/18/22, illuminates the origins of chordate segmentation

Laura Beaster-Jones; Amy C. Horton; Jeremy J. Gibson-Brown; Nicholas D. Holland; Linda Z. Holland

SUMMARY Amphioxus and vertebrates are the only deuterostomes to exhibit unequivocal somitic segmentation. The relative simplicity of the amphioxus genome makes it a favorable organism for elucidating the basic genetic network required for chordate somite development. Here we describe the developmental expression of the somite marker, AmphiTbx15/18/22, which is first expressed at the mid‐gastrula stage in dorsolateral mesendoderm. At the early neurula stage, expression is detected in the first three pairs of developing somites. By the mid‐neurula stage, expression is downregulated in anterior somites, and only detected in the penultimate somite primordia. In early larvae, the gene is expressed in nascent somites before they pinch off from the posterior archenteron (tail bud). Integrating functional, phylogenetic and expression data from a variety of triploblast organisms, we have reconstructed the evolutionary history of the Tbx15/18/22 subfamily. This analysis suggests that the Tbx15/18/22 gene may have played a role in patterning somites in the last common ancestor of all chordates, a role that was later conserved by its descendents following gene duplications within the vertebrate lineage. Furthermore, the comparison of expression domains within this gene subfamily reveals similarities in the genetic bases of trunk and cranial mesoderm segmentation. This lends support to the hypothesis that the vertebrate head evolved from an ancestor possessing segmented cranial mesoderm.


Schizophrenia Research | 2017

Genetic correlation between smoking behaviors and schizophrenia

Sarah M. Hartz; Amy C. Horton; Dana B. Hancock; Timothy B. Baker; Neil E. Caporaso; Li-Shiun Chen; John E. Hokanson; Sharon M. Lutz; Mary L. Marazita; Daniel W. McNeil; Carlos N. Pato; Michele T. Pato; Eric O. Johnson; Laura J. Bierut

Nicotine dependence is highly comorbid with schizophrenia, and the etiology of the comorbidity is unknown. To determine whether there is a genetic correlation of smoking behavior with schizophrenia, genome-wide association study (GWAS) meta-analysis results from five smoking phenotypes (ever/never smoker (N=74,035), age of onset of smoking (N=28,647), cigarettes smoked per day (CPD, N=38,860), nicotine dependence (N=10,666), and current/former smoker (N=40,562)) were compared to GWAS meta-analysis results from schizophrenia (N=79,845) using linkage disequilibrium (LD) score regression. First, the SNP heritability (h2g) of each of the smoking phenotypes was computed using LD score regression (ever/never smoker h2g=0.08, age of onset of smoking h2g=0.06, CPD h2g=0.06, nicotine dependence h2g=0.15, current/former smoker h2g=0.07, p<0.001 for all phenotypes). The SNP heritability for nicotine dependence was statistically higher than the SNP heritability for the other smoking phenotypes (p<0.0005 for all two-way comparisons). Next, a statistically significant (p<0.05) genetic correlation was observed between schizophrenia and three of the five smoking phenotypes (nicotine dependence rg=0.14, CPD rg=0.12, and ever/never smoking rg=0.10). These results suggest that there is a component of common genetic variation that is shared between smoking behaviors and schizophrenia.


Neuroscience Letters | 2016

Pathways to precision medicine in smoking cessation treatments.

Li-Shiun Chen; Amy C. Horton; Laura J. Bierut

Cigarette smoking is highly addictive and modern genetic research has identified robust genetic influences on nicotine dependence. An important step in translating these genetic findings to clinical practice is identifying the genetic factors affecting smoking cessation in order to enhance current smoking cessation treatments. We reviewed the significant genetic variants that predict nicotine dependence, smoking cessation, and response to cessation pharmacotherapy. These data suggest that genetic risks can predict smoking cessation outcomes and moderate the effect of pharmacological treatments. Some pharmacogenetic findings have been replicated in meta-analyses or in multiple smoking cessation trials. The variation in efficacy between smokers with different genetic markers supports the notion that personalized smoking cessation intervention based upon genotype could maximize the efficiency of such treatment while minimizing side effects, thus influencing the number needed to treat (NNT) and the number needed to harm. In summary, as precision medicine is revolutionizing healthcare, smoking cessation may be one of the first areas where genetic variants may identify individuals at increased risk. Current evidence strongly suggests that genetic variants predict cessation failure and that cessation pharmacotherapy effectiveness is modulated by biomarkers such as nicotinic cholinergic receptor α5 subunit (CHRNA5) genotypes or nicotine metabolism ratio (NMR). These findings strengthen the case for the development and rigorous testing of treatments that target patients with different biological risk profiles.


EBioMedicine | 2016

Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes — A Meta-Analysis

Li-Shiun Chen; Timothy B. Baker; Rayjean J. Hung; Amy C. Horton; Robert Culverhouse; Sarah M. Hartz; Nancy L. Saccone; Iona Cheng; Bo Deng; Younghun Han; Helen M. Hansen; Janet Horsman; Claire H. Kim; Albert Rosenberger; Katja K. Aben; Angeline S. Andrew; Shen Chih Chang; Kai Uwe Saum; Hendrik Dienemann; Dorothy K. Hatsukami; Eric O. Johnson; Mala Pande; Margaret Wrensch; John R. McLaughlin; Vidar Skaug; Erik H.F.M. van der Heijden; Jason A. Wampfler; Angela S. Wenzlaff; Penella J. Woll; Shanbeh Zienolddiny

Background Recent meta-analyses show that individuals with high risk variants in CHRNA5 on chromosome 15q25 are likely to develop lung cancer earlier than those with low-risk genotypes. The same high-risk genetic variants also predict nicotine dependence and delayed smoking cessation. It is unclear whether smoking cessation confers the same benefits in terms of lung cancer risk reduction for those who possess CHRNA5 risk variants versus those who do not. Methods Meta-analyses examined the association between smoking cessation and lung cancer risk in 15 studies of individuals with European ancestry who possessed varying rs16969968 genotypes (N = 12,690 ever smokers, including 6988 cases of lung cancer and 5702 controls) in the International Lung Cancer Consortium. Results Smoking cessation (former vs. current smokers) was associated with a lower likelihood of lung cancer (OR = 0.48, 95%CI = 0.30–0.75, p = 0.0015). Among lung cancer patients, smoking cessation was associated with a 7-year delay in median age of lung cancer diagnosis (HR = 0.68, 95%CI = 0.61–0.77, p = 4.9 ∗ 10–10). The CHRNA5 rs16969968 risk genotype (AA) was associated with increased risk and earlier diagnosis for lung cancer, but the beneficial effects of smoking cessation were very similar in those with and without the risk genotype. Conclusion We demonstrate that quitting smoking is highly beneficial in reducing lung cancer risks for smokers regardless of their CHRNA5 rs16969968 genetic risk status. Smokers with high-risk CHRNA5 genotypes, on average, can largely eliminate their elevated genetic risk for lung cancer by quitting smoking- cutting their risk of lung cancer in half and delaying its onset by 7 years for those who develop it. These results: 1) underscore the potential value of smoking cessation for all smokers, 2) suggest that CHRNA5 rs16969968 genotype affects lung cancer diagnosis through its effects on smoking, and 3) have potential value for framing preventive interventions for those who smoke.


bioRxiv | 2017

Genome-wide analysis of risk-taking behaviour and cross-disorder genetic correlations in 116,255 individuals from the UK Biobank cohort

Rona J. Strawbridge; Joey Ward; Breda Cullen; E M Tunbridge; Sarah M. Hartz; Laura J. Bierut; Amy C. Horton; Mark E.S. Bailey; Nicholas A. J. Graham; Amy Ferguson; Donald M. Lyall; Daniel Mackay; Laura M. Pidgeon; Jonathan Cavanagh; Jill P. Pell; Michael Conlon O'Donovan; Valentina Escott-Price; Paul J. Harrison; Daniel J. Smith

Risk-taking behaviour is a key component of several psychiatric disorders and could influence lifestyle choices such as smoking, alcohol use and diet. As a phenotype, risk-taking behaviour therefore fits within a Research Domain Criteria (RDoC) approach, whereby identifying genetic determinants of this trait has the potential to improve our understanding across different psychiatric disorders. Here we report a genome wide association study in 116 255 UK Biobank participants who responded yes/no to the question “Would you consider yourself a risk-taker?” Risk-takers (compared to controls) were more likely to be men, smokers and have a history of psychiatric disorder. Genetic loci associated with risk-taking behaviour were identified on chromosomes 3 (rs13084531) and 6 (rs9379971). The effects of both lead SNPs were comparable between men and women. The chromosome 3 locus highlights CADM2, previously implicated in cognitive and executive functions, but the chromosome 6 locus is challenging to interpret due to the complexity of the HLA region. Risk-taking behaviour shared significant genetic risk with schizophrenia, bipolar disorder, attention deficit hyperactivity disorder and post-traumatic stress disorder, as well as with smoking and total obesity. Despite being based on only a single question, this study furthers our understanding of the biology of risk-taking behaviour, a trait which has a major impact on a range of common physical and mental health disorders.

Collaboration


Dive into the Amy C. Horton's collaboration.

Top Co-Authors

Avatar

Laura J. Bierut

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sarah M. Hartz

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeremy J. Gibson-Brown

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Li-Shiun Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy L. Saccone

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert Culverhouse

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy B. Baker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge