Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy C. Keller is active.

Publication


Featured researches published by Amy C. Keller.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Nitric oxide regulates vascular adaptive mitochondrial dynamics

Matthew W. Miller; Leslie A. Knaub; Luis F. Olivera-Fragoso; Amy C. Keller; Vivek Balasubramaniam; Peter A. Watson; Jane E.B. Reusch

Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover.


Journal of Cardiovascular Pharmacology | 2014

Saxagliptin restores vascular mitochondrial exercise response in the Goto-Kakizaki rat.

Amy C. Keller; Leslie A. Knaub; Matthew W. Miller; Nicholas Birdsey; Dwight J. Klemm; Jane E.B. Reusch

Abstract: Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPAR&ggr; coactivator 1&agr; (PGC-1&agr;), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg−1·d−1). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1&agr;, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.


Diabetes and Vascular Disease Research | 2013

Impaired response to exercise intervention in the vasculature in metabolic syndrome

Leslie A. Knaub; Sylvia A. McCune; Adam J. Chicco; Matthew J. Miller; Russell L. Moore; Nicholas Birdsey; Monique Lloyd; Juan Villarreal; Amy C. Keller; Peter A. Watson; Jane E.B. Reusch

Physical activity decreases risk for diabetes and cardiovascular disease morbidity and mortality; however, the specific impact of exercise on the diabetic vasculature is unexamined. We hypothesized that an acute, moderate exercise intervention in diabetic and hypertensive rats would induce mitochondrial biogenesis and mitochondrial antioxidant defence to improve vascular resilience. SHHF/Mcc-facp lean (hypertensive) and obese (hypertensive, insulin resistant), as well as Sprague Dawley (SD) control rats were run on a treadmill for 8 days. In aortic lysates from SD rats, we observed a significant increase in subunit proteins from oxidative phosphorylation (OxPhos) complexes I–III, with no changes in the lean or obese SHHF rats. Exercise also increased the expression of mitochondrial antioxidant defence uncoupling protein 3 (UCP3) (p < 0.05) in SHHF lean rats, whereas no changes were observed in the SD or SHHF obese rats with exercise. We evaluated upstream signalling pathways for mitochondrial biogenesis, and only peroxisome proliferators–activated receptor gamma coactivator 1α (PGC-1α) significantly decreased in SHHF lean rats (p < 0.05) with exercise. In these experiments, we demonstrate absent mitochondrial induction with exercise exposure in models of chronic vascular disease. These findings suggest that chronic vascular stress results in decreased sensitivity of vasculature to the adaptive mitochondrial responses normally induced by exercise.


Mitochondrion | 2016

Fully automated software for quantitative measurements of mitochondrial morphology.

P. Mason McClatchey; Amy C. Keller; Ron J. Bouchard; Leslie A. Knaub; Jane E.B. Reusch

Mitochondria undergo dynamic changes in morphology in order to adapt to changes in nutrient and oxygen availability, communicate with the nucleus, and modulate intracellular calcium dynamics. Many recent papers have been published assessing mitochondrial morphology endpoints. Although these studies have yielded valuable insights, contemporary assessment of mitochondrial morphology is typically subjective and qualitative, precluding direct comparison of outcomes between different studies and likely missing many subtle effects. In this paper, we describe a novel software technique for measuring the average length, average width, spatial density, and intracellular localization of mitochondria from a fluorescent microscope image. This method was applied to distinguish baseline characteristics of Human Umbilical Vein Endothelial Cells (HUVECs), primary Goto-Kakizaki rat aortic smooth muscle cells (GK SMCs), primary Wistar rat aortic smooth muscle cells (Wistar SMCs), and SH-SY5Ys (human neuroblastoma cell line). Consistent with direct observation, our algorithms found SH-SY5Ys to have the greatest mitochondrial density, while HUVECs were found to have the longest mitochondria. Mitochondrial morphology responses to temperature, nutrient, and oxidative stressors were characterized to test algorithm performance. Large morphology changes recorded by the software agreed with direct observation, and subtle but consistent morphology changes were found that would not otherwise have been detected. Endpoints were consistent between experimental repetitions (R=0.93 for length, R=0.93 for width, R=0.89 for spatial density, and R=0.74 for localization), and maintained reasonable agreement even when compared to images taken with compromised microscope resolution or in an alternate imaging plane. These results indicate that the automated software described herein allows quantitative and objective characterization of mitochondrial morphology from fluorescent microscope images.


Biochemical Society Transactions | 2014

Targeting mitochondria to restore failed adaptation to exercise in diabetes

Kate Geary; Leslie A. Knaub; Irene E. Schauer; Amy C. Keller; Peter A. Watson; Matthew W. Miller; Chrystelle Garat; Kristen J. Nadeau; Melanie Cree-Green; Subbiah Pugazhenthi; Judith G. Regensteiner; Dwight J. Klemm; Jane E.B. Reusch

Our translational research group focuses on addressing the problem of exercise defects in diabetes with basic research efforts in cell and rodent models and clinical research efforts in subjects with diabetes mellitus. CREB (cAMP-response-element-binding protein) regulates cellular differentiation of neurons, β-cells, adipocytes and smooth muscle cells; it is also a potent survival factor and an upstream regulator of mitochondrial biogenesis. In diabetes and cardiovascular disease, CREB protein content is decreased in the vascular media, and its regulation in aberrant in β-cells, neurons and cardiomyocytes. Loss of CREB content and function leads to decreased vascular target tissue resilience when exposed to stressors such as metabolic, oxidative or sheer stress. This basic research programme set the stage for our central hypothesis that diabetes-mediated CREB dysfunction predisposes the diabetes disease progression and cardiovascular complications. Our clinical research programme revealed that diabetes mellitus leads to defects in functional exercise capacity. Our group has determined that the defects in exercise correlate with insulin resistance, endothelial dysfunction, decreased cardiac perfusion and diastolic dysfunction, slowed muscle perfusion kinetics, decreased muscle perfusion and slowed oxidative phosphorylation. Combined basic and clinical research has defined the relationship between exercise and vascular function with particular emphasis on how the signalling to CREB and eNOS [endothelial NOS (nitric oxide synthase)] regulates tissue perfusion, mitochondrial dynamics, vascular function and exercise capacity. The present review summarizes our current working hypothesis that restoration of eNOS/NOS dysfunction will restore cellular homoeostasis and permit an optimal tissue response to an exercise training intervention.


Oxidative Medicine and Cellular Longevity | 2016

Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model

Amy C. Keller; Leslie A. Knaub; P. Mason McClatchey; Chelsea A. Connon; Ron J. Bouchard; Matthew W. Miller; Kate Geary; Lori A. Walker; Dwight J. Klemm; Jane E.B. Reusch

Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM). At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs. Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p < 0.05). Mitochondrial superoxide increased with high glucose in Wistar SMCs (p < 0.05) with no change in the GK beyond elevated baseline concentrations. Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype. Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets.


Journal of NeuroVirology | 2016

Varicella zoster virus infection of human fetal lung cells alters mitochondrial morphology

Amy C. Keller; Hussain Badani; P. Mason McClatchey; Nicholas L. Baird; Jacqueline L. Bowlin; Ron J. Bouchard; Guey Chuen Perng; Jane E.B. Reusch; Benedikt B. Kaufer; Donald H. Gilden; Aamir Shahzad; Peter G. E. Kennedy; Randall J. Cohrs

Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that establishes latency in ganglionic neurons throughout the neuraxis after primary infection. Here, we show that VZV infection induces a time-dependent significant change in mitochondrial morphology, an important indicator of cellular health, since mitochondria are involved in essential cellular functions. VZV immediate-early protein 63 (IE63) was detected in mitochondria-rich cellular fractions extracted from infected human fetal lung fibroblasts (HFL) by Western blotting. IE63 interacted with cytochrome c oxidase in bacterial 2-hybrid analyses. Confocal microscopy of VZV-infected HFL cells at multiple times after infection revealed the presence of IE63 in the nucleus, mitochondria, and cytoplasm. Our data provide the first evidence that VZV infection induces alterations in mitochondrial morphology, including fragmentation, which may be involved in cellular damage and/or death during virus infection.


Physiological Reports | 2018

Glucagon‐like peptide‐1 receptor antagonism impairs basal exercise capacity and vascular adaptation to aerobic exercise training in rats

Rebecca L. Scalzo; Leslie A. Knaub; Sara E. Hull; Amy C. Keller; Kendall S. Hunter; Lori A. Walker; Jane E.B. Reusch

Cardiorespiratory fitness (CRF) inversely predicts cardiovascular (CV) mortality and CRF is impaired in people with type 2 diabetes (T2D). Aerobic exercise training (ET) improves CRF and is associated with decreased risk of premature death in healthy and diseased populations. Understanding the mechanisms contributing to ET adaptation may identify targets for reducing CV mortality of relevance to people with T2D. The antihyperglycemic hormone glucagon‐like peptide‐1 (GLP‐1) influences many of the same pathways as exercise and may contribute to CV adaptation to ET. We hypothesized that GLP‐1 is necessary for adaptation to ET. Twelve‐week‐old male Wistar rats were randomized (n = 8–12/group) to receive PBS or GLP‐1 receptor antagonist (exendin 9‐39 (Ex(9‐39)) via osmotic pump for 4 weeks ± ET. CRF was greater with ET (P < 0.01). Ex(9‐39) treatment blunted CRF in both sedentary and ET rats (P < 0.001). Ex(9‐39) attenuated acetylcholine‐mediated vasodilation, while this response was maintained with Ex(9‐39)+ET (P = 0.04). Aortic stiffness was greater with Ex(9‐39) (P = 0.057) and was made worse when Ex(9‐39) was combined with ET (P = 0.004). Ex vivo aortic vasoconstriction with potassium and phenylephrine was lower with Ex(9‐39) (P < 0.0001). Carotid strain improved with PBS + ET but did not change in the Ex(9‐39) rats with ET (P < 0.0001). Left ventricular mitochondrial respiration was elevated with Ex(9‐39) (P < 0.02). GLP‐1 receptor antagonism impairs CRF with and without ET, attenuates the vascular adaptation to ET, and elevates cardiac mitochondrial respiration. These data suggest that GLP‐1 is integral to the adaptive vascular response to ET.


Oxidative Medicine and Cellular Longevity | 2018

Sepiapterin Improves Vascular Reactivity and Insulin-Stimulated Glucose in Wistar Rats

Amy C. Keller; Leslie A. Knaub; Rebecca L. Scalzo; S. E. Hull; A. E. Johnston; Lori A. Walker; Jane E.B. Reusch

In the vasculature, sedentary behavior leads to endothelial abnormalities, resulting in elevated cardiovascular disease risk. Endothelial nitric oxide synthase (eNOS) aberrations characterize endothelial dysfunction; eNOS also regulates mitochondrial function. We hypothesized that sepiapterin (a precursor to eNOS cofactor tetrahydrobiopterin (BH4)) supplementation would improve endothelium-dependent vascular relaxation in sedentary animals via modulation of NOS function and mitochondrial activity. Sedentary male Wistar rats were fed ad libitum for a total of 10 weeks. Sepiapterin was administered in diet during the final 5 weeks. Intraperitoneal insulin and glucose tolerance tests (IP-ITT/IP-GTT) were conducted at baseline and endpoint. Aorta was assessed for vasoreactivity and mitochondrial respiration. Insulin tolerance, determined by IP-ITT, significantly improved in rats treated with sepiapterin (p < 0.05, interaction of time and treatment). Acetylcholine- (ACh-) driven vasodilation was significantly greater in aorta from sepiapterin-treated rats as compared with control (76.4% versus 54.9% of phenylephrine contraction at 20 μM ACh, p < 0.05). Sepiapterin treatment resulted in significantly elevated state 3 (9.00 oxygen pmol/sec∗mg versus 8.17 oxygen pmol/sec∗mg, p < 0.05) and 4 (7.28 oxygen pmol/sec∗mg versus 5.86 oxygen pmol/sec∗mg, p < 0.05) aortic mitochondrial respiration with significantly lower respiratory control ratio (p < 0.05) during octanoylcarnitine-driven respiration. Vasodilation and insulin sensitivity were improved through targeting NOS via sepiapterin supplementation.


Data in Brief | 2016

Raw and processed microscope images of fixed cells at baseline and following various experimental perturbations

P. Mason McClatchey; Amy C. Keller; Ron J. Bouchard; Leslie A. Knaub; Jane E.B. Reusch

The data included in this article comprise raw and processed images of fixed cells at baseline and subjected to various experimental perturbations. This dataset includes images of HUVEC cells fixed and subsequently incubated at either 37 °C or room temperature, primary rat vascular smooth muscle cells exposed to 25 mM glucose, and SH-SY5Y neurons exposed to hydrogen peroxide. Raw images appear exactly as they were captured on the microscope, while processed images show the binarization provided by software used for measurements of mitochondrial morphology. For in-depth discussion of the experiments and computational methods pertaining to this data, please refer to the corresponding research article titled “Fully automated software for quantitative measurements of mitochondrial morphology” (McClatchey et al., in press) [1].

Collaboration


Dive into the Amy C. Keller's collaboration.

Top Co-Authors

Avatar

Jane E.B. Reusch

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Watson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dwight J. Klemm

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Lori A. Walker

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Nicholas Birdsey

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kate Geary

Anschutz Medical Campus

View shared research outputs
Researchain Logo
Decentralizing Knowledge